Beveridge Williams development & environment consultants

B

Beveridge Williams Melbourne Office 1 Glenferrie Road Malvern 3144 PO Box 61 Malvern 3144 Tel: (03) 9524 8888 Fax: (03) 9524 8899 www.beveridgewilliams.com.au

HYDROGEOLOGICAL, SALINITY, ACID SULPHATE SOIL AND GEOTECHNICAL ASSESSMENT

CRAIGIEBURN WEST PSP

DOCUMENT CONTROL DATA

B	Beveridge Williams Melbourne Office 1 Glenferrie Road	Title	Hydrogeological, Salinity, Acid Sulphate Soil and Geotechnical Assessment
	Malvern 3144	Author	J.Tillig
	PO Box 61	Checked	A.Hayes
	Malvern 3144	Project Manager	A.Hayes
	Tel: (03) 9524 8888	Synopsis	
	Fax: (03) 9524 8899 www.beveridgewilliams.com.au		

Reference: 1801684

Client: Victorian Planning Authority (VPA)

Revision Table

Rev	Description	Date	Authorised
DRAFT	Hydrogeological, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West PSP	13/11/18	АН
1	Hydrogeological, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West PSP	19/02/2020	АН
1.1	Hydrogeological, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West PSP	23/09/2020	АН

Distribution Table

Date	Revision	Distribution
19/02/2020	1.1	Victorian Planning Authority (VPA)
19/02/2020	1.1	Beveridge Williams

Copyright Notice

© Copyright – Beveridge Williams & Co P/L

Users of this document are reminded that it is subject to copyright. This document should not be reproduced, except in full and with the permission of Beveridge Williams & Co Pty Ltd.

CONTENTS

1	INTRO	DUCTION1				
2	SCOPE	OF WORK				
3	SITE D	ETAILS 1				
4	DESKTOP REVIEW					
	4.1	AERIAL PHOTOGRAPH REVIEW				
	4.2	EPA PRIORITY SITES REGISTER AND ISSUED STATEMENTS AND CERTIFICATES OF ENVIRONMENTAL AUDIT				
	4.2.1	SUMMARY OF NEARBY ENVIRONMENTAL AUDITS				
	4.3	GEOLOGY PLANS				
	4.4	TOPOGRAPHY PLANS				
	4.5	CLIMATE				
	4.6	HYDROGEOLOGY PLANS				
	4.6.1	PROTECTED BENEFICIAL USES				
	4.6.2	GROUNDWATER DEPTH				
	4.7	GROUNDWATER FLOW DIRECTION AND RECHARGE				
	4.8	GROUNDWATER USERS AND MANAGEMENT AUTHORITY				
	4.8.1	REGISTERED USERS				
	4.8.2	GROUNDWATER DATA				
	4.9	SURFACE WATER AND DRAINAGE				
	4.9.1	HYDROLOGY AND WETLANDS				
	4.9.2	DAMS				
	4.9.3	SOIL SALINITY AND ACID SULPHATE SOILS				
	4.10	SITE INSPECTION 11				
	5.1	GEOTECHNICAL INVESTIGATION				
	5.2	SOIL SALINITY				
	5.2.1	Adopted Investigation levels				
	5.2.2	RESULTS				
	5.3	ACID SULPHATE SOIL AND BACKGROUND CONCENTRATIONS				
	5.3.1	CHEMICAL TESTING RESULTS				
	5.3.2	SUMMARY				
6	DISCUS	SSION 19				
	6.1	SUMMARY OF FINDINGS				

9	LIMITA	TIONS	24
8	RECON	/IMENDATIONS	21
	7.2	GEOTECHNICAL ASSESSMENT	. 21
	7.1	HYDROGEOLOGICAL, SALINITY AND ACID SULPHATE SOIL ASSESSMENT	. 21
7	CONCL	USIONS	21
	6.1.2	GEOTECHNICAL (STRATA GEOSCIENCE AND ENVIRONMENTAL)	. 20
	6.1.1	Hydrogeological, Salinity and Acid Sulphate Soil (Beveridge Williams)	. 19

FIGURES

- FIGURE 1 SITE LOCATION PLAN
- FIGURE 2 REGIONAL GEOLOGY, TOPOGRAPHY AND WATERCOURSE PLAN
- FIGURE 3 WMIS DATABASE PLAN
- FIGURE 4 APPROXIMATE GROUNDWATER DEPTH PLAN
- FIGURE 5 APPROXIMATE GROUNDWATER SEGMENTS PLAN
- FIGURE 6 SITE PHOTOGRAPH LOCATION PLAN
- FIGURE 7 SITE OBSERVATION PLAN
- FIGURE 8 SAMPLE LOCATION PLAN

APPENDICES

- APPENDIX A PLANNING AND MELBOURNE WATER DRAINAGE SCHEME MAPS
- APPENDIX B SITE PHOTOGRAPHS
- APPENDIX C WMIS DATABASE SEARCH
- APPENDIX D BOREHOLE LOGS
- APPENDIX E GEOTECHNICAL REPORT (STRATA GEOSCIENCES AND ENVIRONMENTAL, 2018)
- APPENDIX F LABORATORY CERTIFICATES OF ANALYSIS

ANZECC	Australia and New Zealand Environment and Conservation Council	PSH	Phase Separated Hydrocarbons
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand	QA/QC	Quality Assurance/Quality Control
AST	Above-ground Storage Tank	RL	Reduced Level
BaP	Benzo(a)pyrene	RPD	Relative Percentage Difference
BTEX	Benzene, Toluene, Ethyl benzene & Xylene	SEPP	State Environment Protection Policy
СНС	Chlorinated hydrocarbons	svoc	Semi Volatile Organic Compounds
сос	Chain of Custody	SWL	Standing Water Level
CUTEP	Clean Up to the Extent Practicable	TDS	Total Dissolved Solids
DNAPL	Dense Non-Aqueous Phase Liquid	TEQ	Toxicity Equivalent Quotient
DO	Dissolved Oxygen	ТРН	Total Petroleum Hydrocarbons
EC	Electrical Conductivity	TRH	Total Recoverable Hydrocarbons
EIL	Environmental Investigation Level	UST	Underground Storage Tank
EPA	Victorian Environmental Protection Authority	voc	Volatile Organic Compounds
GWDB	Groundwater Data Base	VVG	Visualising Victoria's Groundwater
HIL	Health Investigation Level	-	On tables is no data
НМ	Heavy Metal		
HVO	Halogenated Volatile Organics		
LNAPL	Light Non-Aqueous Phase Liquid	Units	
LOR	Limit of Reporting	µg/kg	micrograms per kilogram (ppb)
MAH	Monocyclic Aromatic Hydrocarbons	μg/L	micrograms per litre
NATA	National Association of Testing Authorities	µs/cm	microseimens per centimetre
ND	Non Detect	mg/kg	milligrams per kilogram (ppm)
NEPM	National Environmental Protection Measure (Amended 2013)	mg/L	milligrams per litre
NHMRC	National Health and Medical Research Council	m BGL	Metres below ground level
NAPL	Non-Aqueous Phase Liquid	m TOC	Metres below top of casing
ОСР	Organochlorine Pesticides	m AHD	Metres Australian Height Datum
OPP	Organophosphate Pesticides	ppb	parts per billion
РАН	Polycyclic Aromatic Hydrocarbons	ppm	parts per million
РСВ	Polychlorinated biphenyl	На	Hectare
PID	Photo-ionisation detector		

LIST OF ABBREVIATIONS AND UNITS

1 INTRODUCTION

At the request of the Victorian Planning Authority (VPA), Beveridge Williams & Co P/L (Beveridge Williams) has conducted a Hydrogeological, Salinity, Acid Sulphate Soil and Geotechnical Assessment within the farming zone Craigieburn West PSP (PSP 1068). The work was authorised by Ben Weiner from the Victorian Planning Authority in an email dated 22 October 2018.

The purpose of the Hydrogeological, Salinity, Acid Sulphate Soil and Geotechnical Assessment was to assess groundwater conditions within the PSP area (PSP 1068) to provide high-level advice with regards to potential development constraints (if any) and recommendations for additional physical investigations to confirm the findings of the desktop investigation detailed in this report.

This report presents information from desktop resources, an evaluation of collated desktop information with respect to beneficial uses of the PSP area and recommendations for further assessment prior to development.

2 SCOPE OF WORK

The preliminary hydrogeological, salinity, acid sulphate soil and geotechnical assessment includes the following:

- A high level review of available historical data to assess the risk of salinity including maps, reports, borehole data and historic aerial photographs
- A preliminary site inspection from the site boundaries to identify general landforms and areas of potential salinity or acid sulphate soils
- A preliminary geotechnical and soil salinity sampling and analysis program across the study area through different geology and potential salinity areas identified during the desktop assessment and site inspection.

3 SITE DETAILS

Site details are presented in Table 3-1.

Item		Site Details	Refer to
Site Add	lress	Craigieburn West PSP (PSP 1068)	Figure 1
Approx. Site	Area (ha)	561	Appendix A
Zoning & Municipality		Farming Zone – Schedule 3, City of Hume	Appendix A
Current Use		Farming (grazing)	Appendix B
Historic Si	te Use	Farming (grazing)	-
North		Residential and grazing	
Surrounding	East	Residential	Figure 1
land uses	South	Residential and grazing	Figure 1
	West	Farming and grazing	

Table 3-1: Summary of Site Details

4 DESKTOP REVIEW

The following sources of historical information were reviewed:

- Aerial photographs
- Geology plans
- Topography plans
- Climate data
- Hydrogeology plans
- Melbourne Water Drainage Schemes including surface water and drainage plans
- Review of available catchment data from Yarra Valley Water and Port Phillip & Westernport Catchment Management Authorities

4.1 Aerial Photograph Review

Historical aerial photographs from 1951, 1962, 1974, 1982 and 1991 from the Department of Environment, Land, Water and Planning were reviewed for hydrological indicators. Aerial photographs from 2010, 2014 and 2018 from Nearmap were also reviewed. A summary is provided in Table 4-1.

Year / Source	Summary
1951	The PSP area appears to be predominantly used for agricultural uses (grazing/cropping). The area is largely grass covered with some sparse tree cover. However, some properties across the site exhibit denser tree growth. Aitken Creek is observed running through the northern portion of the PSP area, from the northwest to the southeast. A floodplain area is observed in the northern portion of the PSP area, east of Buddhist Temple Daham Niketanaya. A large dam is observed in the southern portion of the PSP area, approximately 750 m south of the Craigieburn Road. Numerous minor dams (approximate radii of <20 m) are observed within the PSP area.
	Furthermore, Yuroke Creek is observed in the southern portion of the site, originating from approximately 480 m from the southern boundary and heading offsite to the south. The area adjacent to the east of Yuroke Creek (now Greenvale Reservoir) appears to have significant soil disturbance. A drainage alignment is observed east of the southern portion of the PSP area (approximately 500 m south of Craigieburn Road). The tributary stream moves offsite to the east and feeds Aitken Creek. Offsite approximately 2 km to the east, Malcolm Creek is observed heading south/southeast. Offsite approximately 2.5 km to the northwest, Deep Creek is observed running southwest through a hilly region. The hills appear to be of higher elevation than the site.
1962	An unnamed drainage alignment is observed within the northern portion of the site, originating from adjacent to a homestead, and heading southwest offsite. No other significant surface hydrology changes are observed within the PSP area.
1974	Greendale Reservoir has been constructed approximately 650 m offsite to the south and is separated from Yurokes Creek. The reservoir contains a rolled earth fill and rockfill embankment. No other significant surface hydrology changes are observed within the PSP area.
1982 - 1991	No other significant surface hydrology changes are observed within the PSP area.

Table 4-1: Aerial Photograph Review Summary

HYDROGEOLOGICAL, SALINITY, ACID SULPHATE SOIL AND GEOTECHNICAL ASSESSMENT CRAIGIEBURN WEST PSP

BEVERIDG	E WILLIAM	s
		<i>,</i>

Year / Source	Summary
2010	Aitken Hill Conference Centre has been constructed within the southeast corner of the PSP area, which includes a golf course. An area of grass discoloration is observed offsite to the north of Aitken Hill Conference Centre. No other significant surface hydrology changes are observed within the PSP area.
2014	Areas of land abutting the PSP area along the eastern boundary have been developed for residential use. The drainage alignment east of the southern PSP area feeding Aitken Creek has been engineered into a wetland.
	The unnamed drainage alignment in the northern portion of the site has been cut off from the site and redirected in to a drainage reserve due to residential development to the east. No other significant surface hydrology changes are observed within the PSP area.
2018	No significant surface hydrology changes are observed within the PSP area.

The historic aerial photograph review shows areas of surface water runoff and water logging present running through the north portion to the south east consistent with the current site conditions across the PSP area. Based on this Beveridge Williams considers that observations and proposed physical investigation locations based on the current site conditions remains suitable for the recommendations made in this assessment.

4.2 EPA Priority Sites Register and Issued Statements and Certificates of Environmental Audit

The PSP area is not listed on the EPA Priority Sites Register and there are no EPA Priority Sites within 1 km of the PSP area.

A search of the list of issued Certificates and Statements of Environmental Audit revealed that there are 2 sites within 1 km of the PSP area that have been audited. Environmental Audit reports for these sites were reviewed as part of this assessment. A summary of these reports is presented Table 4-2¹.

Location	CARMS No	Date of Audit Completion	Certificate / Statement	Approx. Distance from Site (m)	Direction from Site
Audit Area C, 30-98 Lysterfield Dr, Greenvale	56205-4	17.05.2008	Certificate	800	Southeast
Audit Area D, 30-98 Lysterfield Dr, Greenvale	56205-5	13.04.2017	Certificate	800	Southeast

Table 4-2: Summary of issued Certificates and Statements of Environmental Audit

¹ Environmental audit reports can be accessed: <u>https://www.epa.vic.gov.au/our-work/environmental-audit-reports-online</u>

4.2.1 Summary of Nearby Environmental Audits

Nearby environmental audits to the southeast of the PSP area have included soil and hydrogeological investigations assessed by LanePiper in 2008 (CARMS no. 56205-4) and Cardno in 2017 (CARMS no. 56205-5). Fourteen groundwater monitoring wells had been installed over the environmental audit areas. Groundwater in the area ranged from 13.5 m to 19.5 m below ground surface and found to be moving to the south and southeast.

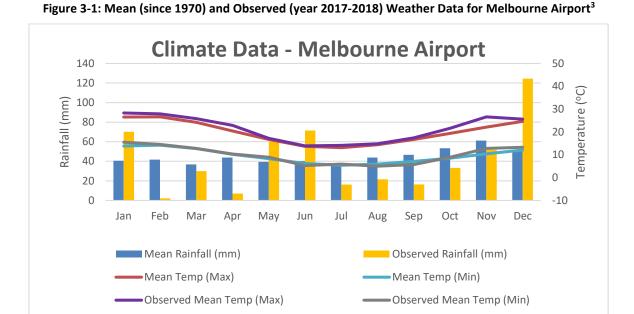
4.3 Geology Plans

Review of the DEDJTR GeoVic version 3² website indicates that the majority of the PSP area is underlain by Miocene to Holocene aged Newer Volcanic Group (Neo) basalt flows with intercalated gravel, sand, clay. The southern portion of the PSP area (south of Craigieburn Road) contains predominantly Silurian aged Melbourne Formation (Sxm) comprising hornfels, and Late Devonian aged Bulla Granodiorite (G276) comprising biotite-cordierite and granite (coarse grained with minor garnet).

Regional geology is presented on Figure 2.

4.4 Topography Plans

The topographical high point within the PSP area is in the northwest corner, with an elevation of approximately 270 mAHD. The topographical low point is in the southeast corner of the PSP area at Yuroke Creek with an elevation of approximately 190 mAHD. There are two hills in the vicinity of the PSP area; one located 700 m west of the PSP area centre (approximate elevation of 300 mAHD) and the other in the southeast corner of the PSP area (approximate elevation of 260 mAHD). The PSP area generally slopes to the southeast, although topography slopes gradually to the east along Craigieburn Road, and outward from the hill in the southeast corner of the PSP area.


Regional topography is sloping to the south, with an approximate topographical high point of 1,000 mAHD located approximately 34 km northwest of the PSP area near at Mount Macedon.

Port Phillip Bay is the main regional low point and is located approximately 25 km south of the PSP area.

4.5 Climate

The local climate information presented on Figure 3-1 was extracted from a meteorological station located at Melbourne Airport approximately 7.2 km southwest of the PSP area. The mean maximum annual temperature is approximately 19.9°C and the mean minimum annual temperature is 9.6°C. Mean annual precipitation at Melbourne Airport is about 534.6 mm/yr with approximately 86.7 rain days (precipitation greater than or equal to 1 mm per year).

² <u>http://er-info.dpi.vic.gov.au/sd_weave/anonymous.html</u> - (online) accessed October 2018

The PSP area is located in a region which has a mean actual evapotranspiration of between 500 and 600 mm/year (presented in Figure 3-2). The PSP area is expected to receive an average of between 0 and 100 mm/year of infiltrated precipitation.

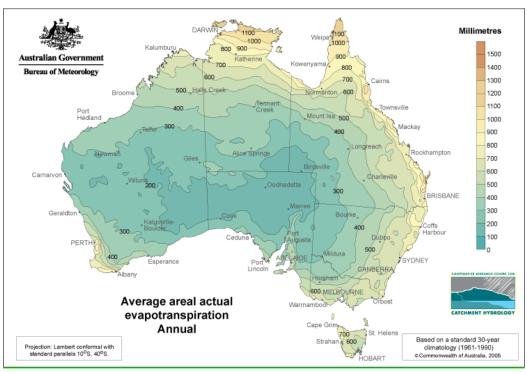
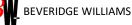



Figure 3-2: Average Annual Areal Actual Evapotranspiration data⁴

³ <u>http://www.bom.gov.au/climate/averages/tables/cw_086282_All.shtml</u> - (online) accessed October 2018 - Bureau of Meteorology, Melbourne Airport, Victoria, 144.83°E, 37.67°S, 113 mAHD

⁴ <u>http://www.bom.gov.au/isp/ncc/climate_averages/evapotranspiration/index.jsp</u> - (online) accessed October 2018 - Bureau of Meteorology, 2018, Average areal actual evapotranspiration (Annual)

4.6 Hydrogeology Plans

4.6.1 Protected Beneficial Uses

A search of the Visualising Victoria's Groundwater⁵ database showed the PSP area to be underlain by groundwaters with varying total dissolved solids (TDS) concentrations, with TDS concentrations generally ranging from 3,500 to 7,000 mg/L. This classifies the groundwater as Segment C, as per the State Environment Protection Policy (SEPP) for Water (2018). However, groundwater in the northwest corner and in the PSP area centre have indicative TDS ranges between 1,000 to 3,500 mg/L and 7,000 to 13,000 mg/L respectively.

The protected beneficial uses of Segment C are listed in Table 4-3.

		Segments (mg/L TDS)							
		A1	A2	В	С	D	E	F	
Beneficial Uses		(0 - 600)	(601- 1,200)	(1,201 - 3,100)	(3,101 – 5,400)	(5,401 – 7,100)	(7,101 – 10,000)	(>10,00 0)	
Water dependent ecosystems and species		v	V	v	v	V	V	v	
Potable water	desirable	V							
supply	acceptable		٧						
Potable minera	I water supply	V	٧	v	٧				
Agriculture	irrigation	V	V	V					
and irrigation	stock watering	٧	v	v	٧	v	٧		
Industrial and	commercial	v	٧	V	V	v			
	Water-based recreation (primary contact recreation)		٧	v	٧	٧	v	v	
Traditional Owner cultural values		v	v	v	v	v	v	v	
Cultural and spiritual values		٧	v	V	v	v	v	V	
Buildings and structures		٧	v	V	V	v	V	٧	
Geothermal	properties	V	V	V	V	v	v	V	

Table 4-3: Beneficial Uses for Groundwater

Note: Table 4-3 is a reproduction of 'Table 2 – Beneficial Uses for Groundwater' from the State Environment Protection Policy (Waters, October 2018). The shading denotes the beneficial uses to be protected for the site based on the reported TDS values.

4.6.2 Groundwater Depth

Information on groundwater depths collected from the Visualising Victoria's Groundwater² database showed groundwater depth to be varied across the PSP area. In the northern and central portion of

⁵ <u>http://www.vvg.org.au/</u> - (online) accessed October 2018

the PSP area, groundwater ranges between <5 m to 20 m below the ground surface. Groundwater in the southern portion however was indicated as generally ranging between 10 m to 50 m below the ground surface.

Previous environmental audits conducted approximately 800 m southeast of the PSP area revealed that the depth to groundwater in July 2016 (Atma, 2016) in the area ranged from 13.5 m to 19.5 m below ground surface.

4.7 Groundwater Flow Direction and Recharge

Groundwater flow is anticipated to be in line with the regional topography, with the general groundwater flow direction to the southeast, towards Aitken Creek and Greenvale Reservoir, which groundwater is then expected to discharge into. Previous environmental audits conducted approximately 800 m southeast of the PSP area revealed that groundwater was moving south (EPA CARMS no. 56205-5) and southeast (EPA CARMS no. 56205-4).

Ultimately it is considered that groundwater will discharge into Port Phillip Bay to the south of the PSP area. Regional groundwater recharge is most likely to occur in open grassland predominantly from rainfall. It is considered within the PSP area dams could potentially be acting as local recharge features if hydraulically connected to the unconfined aquifer.

4.8 Groundwater Users and Management Authority

The PSP area is located within a region administered by Southern Rural Water. A search was completed for registered groundwater bores within an approximate 5.0 km circular radius from the centre of the PSP area.

4.8.1 Registered Users

Ninety-six groundwater bores were registered within an approximate 5.0 km radius from the centre of the PSP area. The Water Measurement Information System (WMIS)⁶ search data is presented in Appendix C. The locations of the registered groundwater bores are present on Figure 3. A summary of the data is presented in Table 4-3.

Number of Bores	Registered Uses	Total depth (m)
4	Domestic	58 – 120
53	Domestic & Stock	9 – 121
1	Domestic & Irrigation	31
3	Groundwater Investigation	35 – 67
1	Industrial	150
2	Irrigation	33 – 55
1	Miscellaneous	91

Table 4-3: Groundwater Database Assets - Registered Uses

⁶ WMIS managed by Department of Environment, Land, Water and Planning: <u>http://data.water.vic.gov.au/monitoring.htm</u> (accessed 25 October 2018).

HYDROGEOLOGICAL, SALINITY, ACID SULPHATE SOIL AND GEOTECHNICAL ASSESSMENT CRAIGIEBURN WEST PSP

BEVERIDGE WILLIAMS

Number of Bores	Registered Uses	Total depth (m)
13	Non-groundwater	10 – 59
8	Not Known	21-97
2	Observation & Dryland Salinity Bore Network	25 – 27
3	Observation	10 – 28
4	Stock	24 – 58
1	Stock, Dairy & Domestic	166

Twelve (12) groundwater bores are present within the PSP area (for stock, domestic, nongroundwater, observation, dairy and irrigation purposes). Two bores are listed as observation bores, which have a total depth of 10 mBGL, considered to be targeting the Quaternary Basalt aquifer unit.

4.8.2 Groundwater Data

4.8.2.1 Groundwater Levels and Yields

Groundwater levels were reported within two registered groundwater bores within 5.0 km of the PSP area. Standing water levels were recorded in November 2004 in both wells. The standing water levels were 225 mAHD in WRK957993 (4 km northeast of the PSP area centre) and 201 mAHD in WRK957997 (southeast of the PSP area centre (1.7 km southeast of the PSP area centre). This is in line with the anticipated south-easterly groundwater flow direction.

The drilled depths of the registered bores indicate multiple aquifers are present within the surrounding area, with screened depths ranging between 15 and 166 mBTOC. The recorded yields from the registered bores within the area ranged from 0.05 to 10.07 litres/second.

4.8.2.2 Groundwater Chemistry

Groundwater chemistry data was available from three groundwater observation wells within the PSP area. Field pH area ranged from 6.5 to 8.3.

Regional TDS concentrations were variable, ranging between 3,437 and 7,889 mg/L. Only one monitoring well within 5 km of the PSP area centre reported TDS data for groundwater within 30 m of the ground surface, reported as 3,437 mg/L. Regional field pH was also variable, ranging from 6.5 to 9.0.

4.9 Surface Water and Drainage

Three large dams (greater than 5,000 m²) are present within the PSP area, all located south of Craigieburn Road. Numerous (approx. 40) minor stock watering/irrigation dams are present within the PSP area.

Four major surface drains are present traversing the PSP area:

- Unnamed drainage alignment within the northern portion of the site heading offsite to the southeast.
- Aitken Creek within the northern portion of the site, heading offsite to the southeast.

- Yuroke Creek in the southern portion of the site, heading offsite to the south.
- Broadies Creek in the south portion of the site heading offsite to the southeast.

Surface water runoff is expected to occur in varying directions across the PSP area:

- Surface water runoff in the northern portion of the PSP area is expected to occur to the southeast in line with the unnamed drainage alignment and Aitken Creek.
- Surface water runoff in the center of the PSP area is anticipated to occur to the east in line with Craigieburn Road.
- Surface water runoff in the southern portion of the PSP area is expected to occur predominantly to the south, in line with the topographical gradient caused by Aitken Hill towards Yuroke Creek adjacent to the Greenvale Reservoir. Runoff to the north is expected to occur on the northern side of Aitken Hill.

4.9.1 Hydrology and wetlands

A review of the available information from Melbourne Water, Yarra Valley Water and Port Phillip & Westernport Catchment Management Authorities⁷ show that one semi-ephemeral creek, Aitken Creek is located in the north portion of the PSP area. Aitken Creek was observed to drain to the south east with occasional small ponds and constructed wetlands/retention basins located along the creek before draining into Merri Creek (a major tributary of the Yarra River Basin) approximately 5.6 km to the south east.

The creeks are fed from catchments in the north and north west, flowing to the south where the Merri Creek eventually joins the Yarra River. No water level data for Merri Creek was available from Melbourne Water.

No nationally important wetlands, wetland sites of National Environmental Significance or sites of state significance were identified within or immediately adjacent to the PSP area.

Melbourne Water Drainage Scheme design plans have been provided in Appendix A.

4.9.2 Dams

There are a number of small dams across the Study Area. Apart from dams in the north-east of the Study Area, most dams are on flat land and appear to have limited run-off catchment. Some dams were seen to have channels connecting to the Whiteside Street drain, which may allow filling from or overflow to this channel. Some dams may have been excavated to intersect groundwater in the south portion of the site. At the time of the site visit, the majority of the dams held water. It is noted that a number of factors may influence water levels in dams, so the water level in dams is not necessarily an indication of the depth to groundwater.

No visual indications of salinity were noted at within the observe dams in the study area.

^{7 &}lt;u>http://www.ppwrcs.vic.gov.au/interactive-map/</u> (Accessed 1 November 2018)

4.9.3 Soil Salinity and Acid Sulphate Soils

4.9.3.1 Acid Sulphate Soils

A review of the Victorian Resources online⁸ plans indicate that the PSP area is not identified as a potential acid sulphate soils area with the closest known area of acid sulphate soils located approximately 12 km south in Oak Park.

4.9.3.2 Salinity

In order to assess the risk of salinity issues within the PSP area, Beveridge Williams has compared the inferred groundwater depths, total salinity/total dissolved solids and site observations (including broad vegetation type).

In accordance with Rhoades et al.(1992) waters are typically divided into the following classifications:

Water Class	Type of Water	EC (μS/cm)
Non-saline	Drinking water and irrigation	<700
Slightly Saline	Irrigation	700 – 2,000
Moderately Saline	Primary drainage water and groundwater	2,000 - 10,000
Highly Saline	Secondary drainage water and groundwater	>10,000

Table 4: Classification of Saline Waters (Rhoades et. al., 1992)

Based on the inferred groundwater TDS concentrations and measured salinity within the existing groundwater bores located through the PSP and surrounding regions, groundwaters have been identified with TDS ranging between 3,437 and 7,889 mg/L and electrical conductivity of 182 to 15,500 μ S/cm (averaging 7,700 μ S/cm). Based on this groundwaters are considered to typically range between moderately saline to highly saline waters.

A review of the groundwater dependent ecosystems (GDE) high level maps prepared by the Bureau of Meteorology (BOM)⁹ was undertaken. This high level remote sensing data shows the PSP located within the Central Victorian Uplands and Victorian Volcanic plain bio regions with surface water flows through the PSP area comprising:

- Aitken Creek (north portion of the PSP area)
- Yuroke Creek (central portion of the PSP area)
- Broadies Creek (south portion of the PAP area)

Based on inferred groundwater depths (ranging between <5 m to 20-50 m, refer to Figure 4) through these regions it is anticipated that the waters are likely to receive groundwater inflows through the central portion the PSP (Yuroke Creek) with Aitken and Broadies Creeks heavily influenced by rainfall events.

^{8 &}lt;u>http://vro.agriculture.vic.gov.au/dpi/vro/vrosite.nsf/pages/soil_acid_sulfate_soils_pdfs/\$FILE/melbourne-t7822.pdf</u> (Accessed 1 November 2018)

⁹ <u>http://www.bom.gov.au/water/groundwater/gde/map.shtml</u> (accessed 1 November 2018)

4.10 Site Inspection

Site inspections were carried out across the Craigieburn West PSP (PSP 1068) by a Beveridge Williams Environmental Scientist on 1 November and 12-14 December 2018. A map of photograph locations (Figure 6) and site photographs taken during the site inspection are shown in Appendix G.

A summary of the observations is presented in Table 4-3.

Address	Site No	Notes	Photos
550-570 Mt Ridley Road, /1780 Mickleham Road Mickleham	5	Topography grading to south east, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	IMG_01, IMG_02, IMG_019, IMG_031
685 Mt Ridley Road/1880 Mickleham Road Mickleham	3	Topography grading to south east, no signs of shallow groundwater, healthy vegetation. Property use comprised education (primary school).	-
1800 Mickleham Road Mickleham	4	Topography grading to south east, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	IMG_03
1760 Mickleham Road Mickleham	6	Topography grading to south with a slight rise to the north east portion, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	IMG_04, IMG_018, IMG_032, IMG_033, IMG034
1690 Mickleham Road Mickleham	10		IMG_05, IMG_017
1720 Mickleham Road Mickleham	7	Topography grading to south east, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	IMG_06, IMG_035
220 Olivers Road Mickleham	14	Drainage was observed extending towards the south east from the north west corner of 1690 through 1720 Mickleham Road.	IMG_020, IMG_036
290 Olivers Road Mickleham	8		-
1660 Mickleham Road Mickleham	11		-
1630 Mickleham Road Mickleham	12	Topography grading to west before grading back towards the south east, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	IMG_07
1600 Mickleham Road Mickleham	17		-
1570 Mickleham Road Mickleham	18	Topography grading to south, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	IMG_08

HYDROGEOLOGICAL, SALINITY, ACID SULPHATE SOIL AND GEOTECHNICAL ASSESSMENT CRAIGIEBURN WEST PSP

	1		1
Address	Site No	Notes	Photos
1550 Mickleham Road Mickleham	19		-
1540 Mickleham Road Mickleham	20	Topography grading to south east, no signs of shallow groundwater,	IMG_09
1520 Mickleham Road Mickleham	21/22	healthy vegetation with extensive grass growth. Property use comprised agricultural (grazing).	-
1530 Mickleham Road Mickleham	21/22		-
680-690 Craigieburn Road Mickleham	24	Topography grading to south east, no signs of shallow groundwater,	
700 Craigieburn Road Mickleham	23	healthy vegetation. Property use comprised agricultural (grazing).	IMG_024
125 Whites Lane Mickleham	16	Topography grading to south east, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	-
225 Olivers Road Mickleham	15	Topography grading to south east, no signs of shallow groundwater, healthy vegetation. Property use comprised agricultural (grazing).	-
75 Whites Lane Mickleham	25	Topography grading to south east, a single dam located along east boundary. Basalt boulders observed in excavation spoil/dam embankment, some reed grass vegetation observed through the paddock area to the south. Property use comprised agricultural (grazing).	IMG_022
640 Craigieburn Road Mickleham	26	Topography grading to south east. Basalt boulders observed in excavation spoil/dam embankment, some reed grass vegetation observed throughout the paddock. Property use comprised agricultural (grazing).	IMG_023, IMG_040
665 Craigieburn Road Craigieburn	28	Topography grading to south east. Lager tree vegetation observed across the north portion of the property, some reed grass vegetation observed throughout the paddock. Site use comprised agricultural (grazing).	IMG_025
1480 Mickleham Road Craigieburn	27	Topography grading to south east. Lager tree vegetation observed across the east portion of the property, some reed grass vegetation observed throughout the paddock. Site use comprised agricultural (grazing).	-
1430 Mickleham Road Craigieburn	29	Topography grading to south east, a single dam with high embankment located along east boundary in line with a drainage alignment present through the residential development to the east. Some reed grasses and willow trees observed surrounding the dam area. Property use comprised agricultural (grazing).	IMG_028
1390 Mickleham Road Craigieburn	30	Topography slightly grading to south east with a drainage channel observed from the north west corner of the property feeding into a large dam in the south west corner. Lager tree vegetation observed across the west boundary portion of the property. Property use comprised agricultural (grazing).	IMG_010, IMG_029
1370 Mickleham Road Craigieburn	32	Topography slightly grading to south west and vegetated with low lying grasses. Property use comprised agricultural (grazing).	IMG_011
1360 Mickleham Road Craigieburn	33	Topography slightly grading to south west and vegetated with low lying grasses. Property use comprised agricultural (grazing).	IMG_030

HYDROGEOLOGICAL, SALINITY, ACID SULPHATE SOIL AND GEOTECHNICAL ASSESSMENT CRAIGIEBURN WEST PSP

Address	Site No	Notes	Photos
1340 Mickleham Road Craigieburn	31	Topography slightly grading to south west from the east and vegetated with low lying grasses. Property use comprised agricultural (grazing). A portion of clearing was visible in the central portion of the property and a dam was located in the south west corner.	IMG_012, IMG_027
1320 Mickleham Road Craigieburn	34	Topography slightly grading to south west and vegetated with low lying	-
1300 Mickleham Road Craigieburn	35	grasses. Property use comprised agricultural (grazing).	IMG_014
1290 Mickleham Road Greenvale	36	Topography grading to south west and vegetated with low lying grasses. Property use comprised agricultural (grazing).	IMG_037
1240 Mickleham Road Greenvale	18	Topography grading to south west and vegetated with low lying grasses.	IMG_013, IMG_016
1880 Mickleham Road Mickleham	3	Property use comprised agricultural (grazing).	-
20 Dunhelen Lane, Craigieburn	39	Topography slightly grading to south west and vegetated with low lying grasses. Site use comprised commercial (conference center)	IMG_016, IMG038, IMG_039

Selected photographs taken during the site inspections on 22 May 2018 are presented in Appendix B, locations of site observations are provided on Figure 7.

5 GEOTECHNICAL AND SOIL SALINTY ASSESSMENT

A field inspection with a limited soil sampling and geotechnical investigation was undertaken focusing on the identified areas of:

- Potential shallow groundwater
- Different geological profiles; and
- Potential areas of salinity

Sample locations are shown in Figure 7.

5.1 Geotechnical Investigation

A Geotechnical Investigation and General Soil Classification for Development report was completed by Strata Geoscience and Environmental.

The general findings of this investigation were:

- Geotechnical soils to a maximum depth of 3.0 meters below the existing ground surface (mbg) and found a variable veneer of Clayey Silts (ML) and Silty CLAYS (CH) overlying inferred Quaternary-aged Basalts. Stoney rises and rocky outcroppings of basalt were observed over significant areas of the precinct. Bore BH18 was associated with inferred Devonian aged Granites whilst BH07 is thought to be associated with Silurian Siltstones.
- No groundwater was encountered throughout geotechnical reconnaissance over the site. It is noteworthy that shallow ephemeral water tables may exist throughout wetter periods. Accordingly construction activities are not recommended preceding during or immediately post periods of high rainfall.
- Shallow hard rock deposits were encountered over significant areas of the precinct. This will impact excavation activities including excavation of service trenches, road cutting, pile inserts and foundation construction.
- Aerialisation of dust likely when bulk earthworks conducted in drier periods. Dust management measures to prevent aerialisation should be implemented.
- Numerous farm dams. Groundwater not encountered perched water tables over endemic clays (where present) likely throughout wetter months, drainage required where foundations/utilities/roading are founded in this zone. Existing dams MUST not be used as subdivisional development areas without further site specific intensive geotechnical assessment and are better suited as incorporation in WSUD or as landscape amenities.
- Geotechnical drilling of the precinct revealed Clayey SILTS (ML)/Silty CLAYS (CL/CH). Based on experience with similar subgrades, it is recommended that:
 - A CBR range value of 3-6 % be adopted for subgrade materials. This range is close to a lower bound value for these materials and are based on the assumption that the topsoil will be stripped (where required) prior to pavement construction. It is also contingent upon adequate site preparation by proof rolling (to detect any unsuitable soft or loose material) and subgrade compaction.

- Geotechnical test pitting immediately prior to bulk excavations over the proposed excavation areas is recommended given the potential for shallow rock over some areas as encountered in some bores and observed over the landscape. This may affect the ability to cost effectively the establishment of underground services in some areas.
- Emmerson Class testing revealed that subsoils are generally prone to severe soil dispersion, it is recommended that bulk storages have excavated surfaces treated with gypsum and are lined to prevent potential soil dispersion/erosion and the resultant risks associated with structural infrastructure failure and water quality decline

It is recommended that further geotechnical investigation, incorporating geotechnical test pitting, be conducted when specific development/infrastructure design plans are finalised and the siting of all earthworks and construction locations are known.

The detailed geotechnical report and findings are provided in Appendix E.

5.2 Soil Salinity

Soils were sampled using a solid augur from the surface to a maximum depth of 2 m below the surface. No deeper salinity samples were undertaken as part of this investigation based on the preliminary nature and shallow rock formations prevalent within the region.

Soil electrical conductivity (EC) was measured using a 1:5 extract method by mixing 1 part soil to 5 parts deionised water by volume (approximately 20g:100mL). Solution was shaken for 1 minute and allowed to settle prior to testing for EX and pH using a water quality meter.

5.2.1 Adopted Investigation levels

As salinity levels which may affect vegetation EC ranges have been derived from plant tolerance levels for different soil types provided by Victoria Resources Online¹⁰ (previously managed by the Department of Environment and Primary Industries).

Water Class	EC 1:5 (μS/cm)			
Water Class	Sandy Loams	Clay loams to light clays	Medium to heavy clays	
Non-saline (S0)	<200	<200	<300	
Slightly Saline (S1)	200 – 300	200 - 400	300 – 600	
Moderately Saline (S2)	400 – 700	500 – 900	700 – 1,300	
Highly Saline (S3)	800 – 1,500	1,000 - 1,800	1,400 – 2,700	
Extremely Saline (S4)	>1,500	>1,800	>2,700	

¹⁰ <u>http://vro.agriculture.vic.gov.au/dpi/vro/vrosite.nsf/pages/water_spotting_soil_salting#sc</u> (accessed 30/11/2018)

5.2.2 Results

Site ID	Sample Location	Soil Type	Sample Depth	pH 1:5	EC 1:5 (μS/cm)	Water Class
5	BH01	Clay loams to light clays	0.0-0.1 1.2-1.3	6.09 7.65	140 450	S0 S1
5	BH02	Clay loams to light clays	0.0-0.1 1.9-2.0	7.43 7.24	240 880	S1 S2
6	вноз	Clay loams to light clays	0.0-0.1 1.9-2.0	6.02 7.03	180 250	S0 S1
6	BH04	Clay loams to light clays	0.0-0.1 1.9-2.0	5.92 6.90	240 90	S1 S0
9	BH05	Clay loams to light clays	0.0-0.1	5.82	60	SO
7	BH06	Clay loams to light clays	0.0-0.1	5.79	160	SO
12	BH07	Sandy Loams Clay loams to light clays	0.0-0.1 1.7-1.8	6.61 7.86	50 150	S0 S0
13	BH08	Sandy Loams	0.0-0.1	7.35	70	SO
14	BH09	Clay loams to light clays	0.0-0.1	6.40	60	SO
16	BH10	Clay loams to light clays	0.0-0.1 0.7-0.8	7.09 7.08	30 30	SO
26	BH11	Clay loams to light clays	0.0-0.1 1.9-2.0	6.76 7.07	20` 50	SO
27	BH12	Clay loams to light clays	0.0-0.1	6.55	40	SO
28	BH13	Clay loams to light clays	0.0-0.1 1.9-2.0	6.52 6.67	60 90	SO
30	BH14	Clay loams to light clays	0.0-0.1 1.4-1.5	7.10 7.73	50 150	SO
33	BH15	Sandy Loams Clay loams to light clays	0.0-0.1 1.3-1.4	6.25 6.74	110 180	SO
34	BH16	Clay loams to light clays	0.0-0.1 0.9-1.0	6.16 7.84	50 210	50 51
34	BH17	Clay loams to light clays	0.0-0.1	7.14	10	SO
36	BH18	Sandy Loams	0.0-0.1 1.9-2.0	6.60 7.44	70 100	SO
39	BH19	Clay loams to light clays	0.0-0.1	7.18	50	SO

Based on the field testing the majority of the soils across the study area were recorded within the non-saline to slightly saline soil ranges with underlying soils at a single location BH02) located in the north portion (Site 5) along an observed low point anticipated to act as a preferential flow path for surface water runoff towards the south east.

Borehole logs and field testing results are provided in Appendix D.

5.3 Acid Sulphate Soil and Background Concentrations

Based on the Victorian Resources online plans the risk of acid sulphate soils being present within the PSP area is considered to be low. Additional sampling works were undertaken to confirm the low risk with soil samples collected from between 0.5 m depth and 2.0 with select samples tested for pH field $(pH_{(f)})$ and pH oxidised $(pH_{(fox)})$, sulphate, nitrate and heavy metals. Additional chemical testing for background concentrations for nitrate, organochlorine pesticides (OCP) and organophosphorus pesticides was also undertaken.

The chemical testing program for individual samples is detailed in Table 4-5.

Sample Numbers	Testing Program
BH01/0.0-0.1, BH02/0.0-0.1, BH04/0.0-0.1, BH05/0.0-0.1, BH06/0.0-0.1, BH07/0.0-0.1, BH08/0.0-0.1, BH09/0.0-0.1, BH10/0.0-0.1, BH11/0.0-0.1,BH12/0.0-0.1, BH13/0.0-0.1, BH14/0.0-0.1, BH15/0.3-0.4, BH16/0.0-0.1, BH17/0.0-0.1, BH18/0.0-0.1, BH19/0.0-0.1	Heavy metals ¹¹ , Organochlorine Pesticides (OCP) and Organophosphate Pesticides (OPP)
BH01/0.0-0.1, BH01/1.2-1.3, BH02/0.0-0.1, BH02/1.9-2.0, BH04/0.0-0.1, BH04/1.9-2.0, BH05/0.0-0.1, BH06/0.0-0.1, BH07/0.0-0.1, BH07/1.7-1.8, BH08/0.0-0.1, BH09/0.0-0.1, BH10/0.0-0.1, BH11/0.0-0.1, BH11/1.9-2.0, BH12/0.0-0.1, BH13/0.0-0.1, BH13/1.9-2.0, BH14/0.0-0.1, BH15/0.3-0.4, BH15/1.3-1.4, BH16/0.0-0.1, BH16/0.9-1.0, BH17/0.0-0.1, BH18/0.0-0.1, BH18/1.9-2.0, BH19/0.0-0.1	Sulphate, $ph_{(f)}$ and $pH_{(fox)}$

Table 4-5: Soil Sample Chemical Testing Program

5.3.1 Chemical Testing Results

The reported chemical testing results were compared against adopted criteria (DSE, Victorian Best Practice Guidelines for Assessing and Managing Coastal Acid Sulfate Soils and NEPM Amendment 2013 ecological screening level (ESL) criteria).

5.3.1.1 Heavy metals, OCP and OPP

With the exception of a single nickel concentration (31mg/kg, BH17/0.0-0.1), marginally above the adopted criteria (30mg/kg) all analytes were reported below the NEPM Amendment 2013 Ecological Investigation Levels and generally lower nutrient (nitrate) concentrations the risk of surface water runoff to adversely impacted receiving waters to be low providing adequate sediment controls are maintained during any site works.

5.3.1.2 $\,pH_{(f)}$ and $pH_{(fox)}$

With the exception of locations (BH05, BH16 and BH17) $pH_{(f)}$ and $pH_{(fox)}$ testing results reported a slight reactivity in the majority of the soils across the study area indicating a low risk to underground structures and concrete slabs.

¹¹ Heavy metals: Al, Sb, As, Ba, Be, B, Cd, Cr (III+VI), Co, Cu, Fe, Pb, Mn, Hg, Mo, Ni, Se, Ag, Sn, V, Zn

Soils at BH05, BH16 and BH17 all reported a moderate reactivity and were situated within a grey silty CLAY/clayey silt, indicative if the underlying weathered basaltic soils.

5.3.1.3 Sulphate

Reported concentrations of sulphate ranged between 230 m/kg and 3700 mg/kg. These concentration ranges are anticipated to be representative of back ground concentrations an in conjunction with the reported pH(f) ranges (>5) the sulphate concentrations are not likely to pose an acidification risk with the majority of the sulphate bound within mineralisation (R.Wrigley, R. van de Graaff, S. Lang, 2006¹²¹) such as Barium Sulphate and inert.

5.3.2 Summary

The majority of the site soils are considered to be of low risk fir site structures and potential runoff impacts providing adequate sediment controls are maintained. However, based on the moderate reactivity reported within BH05, BH16 and BH17, consideration should be made where structures are proposed to be in contact with the grey silty CLAY/clayey SILT in which structures should:

- Be constructed with materials suitable for use within moderately reactive soils.
- Where possible adequate buffer constructed from a low reactivity medium (such as crushed rock packing) should be used between concrete structures and the grey silty CLAY/clayey SILT

The Laboratory Certificates of Analysis for soil samples are provided in Appendix F.

¹² Roger Wrigley, Robert van de Graaff and Simone Lang (2006), "Residential Development On The New Volcanics: A Case Study Of Suspected Barium Contamination And Soil Amendment", Australian Geomechanics Vol 41 No 3

6 DISCUSSION

6.1 Summary of Findings

6.1.1 Hydrogeological, Salinity and Acid Sulphate Soil (Beveridge Williams)

Based historical photographs, pre-existing native vegetation was already cleared for grazing around by the 1950s (i.e. approximately 70 years ago), therefore, salinity due to water table rise would be expected to have become evident by this time. Seasonal variations and longer-term climatic variation are likely to vary the level of the water table, but significant changes due to lag effects of vegetation clearing are not expected.

The typically thin soil cover over the basalt would limit capillary rise of groundwater, if the water table is located within the basalt material (i.e. below the soil horizon) indicating local effects around surface water bodies. Existing dams and open drainage channels are expected to be removed or incorporated into landscaped areas, drainage and/or wetland reserve as part of the development through the Study area.

Although the detailed planned stormwater management approach for the future residential developments within the Study area is not known, improved drainage, along with the introduction of impermeable surfaces of roads and roofing, may have the effect of lowering the groundwater table across the majority of the study area. This would further reduce the risk of salinity expression at the surface.

Although the depth to groundwater in the Study Area has not been confirmed, available groundwater chemistry information suggests the groundwater in the uppermost (basalt) aquifer to be of low to moderate salinity across the majority of the study area.

Based on the information reviewed and site observations the following was noted:

- Salting risk within this land system has been assigned a "very low" rating based on slope type commonly comprising steep slopes or elevated plateaus and depth to water table (typically deeper than 10m)
- Areas of shallow groundwater (<5m, see Figure 4) are more vulnerable to dryland salinity such as discharge points around drains, dams and springs (as shown on Figure 7)
- No piezometers have been installed to verify groundwater quality and depths, however surface observations were made and some preliminary sampling of soils was undertaken of the more vulnerable areas with the landscape.
- The preliminary field observations and surface sampling confirmed some localised moderately saline soils onsite, with no evidence of broad salinity with the Study Area
- The majority of the PSP area is underlain by basaltic based geology with Melbourne Formation and Bulla Granodiorite with refusal on the underlying rock formations typically within 3m below ground level across the majority the Study area
- Field and Laboratory testing results (Section 4.9.3.2 and Appendix F respectively) indicate the majority of the study area is underlain by slightly reactive soils with sulphate concentrations representative of typical background concentrations in soils of basaltic origin. Based on this and the common form of sulphate in volcanic soils commonly bound in the form of barium

- The area has a high density of groundwater wells used for domestic and stock watering uses (19 registered wells within the Study Area), consistent with the available groundwater quality data which indicates that groundwater is of sufficiently low salinity to be potentially suitable for stock watering, or irrigation without harm to vegetation
- Potential for shallow groundwater and/or discharge is present through the central portion of the PSP area along Yuroke Creek
- Potential for higher (perched) water tables is present in proximity to dams (shown on Figure 7)
- Groundwaters are considered to predominantly comprise low to moderately saline waters with a portion of potentially high salinity waters through the central portion of the site (Figure 5). However, based on the anticipated depths (between 10 to 50 m) across the majority of the PSP area, groundwater may not be encountered or pose a constraint to the development of the PSP area.
- No obvious signs of salinity were observed across the PSP area.

6.1.2 Geotechnical (Strata Geoscience and Environmental)

Physical investigations across the precinct area encountered soils to a maximum depth of 3.0 meters below the existing ground surface (mbg) and found a variable veneer of Clayey Silts (ML) and Silty CLAYS (CH) overlying inferred Quaternary-aged Basalts with stoney rises and rocky outcroppings of basalt were observed over significant areas of the precinct. Further observations included:

- No groundwater was encountered throughout the geotechnical reconnaissance over the site
- Based on the surface soils across the majority of the precinct comprising Clayey Silts (ML) and Silty CLAYS shallow ephemeral water tables may exist throughout wetter periods

The detailed discussions and testing results are provided in Strata Geocience and Environmental's report provided in Appendix E.

7 CONCLUSIONS

7.1 Hydrogeological, salinity and Acid Sulphate Soil Assessment

Based the investigations undertaken as part of the Hydrogeological, salinity and acid sulphate soil assessment, Beveridge Williams Considers:

- The risk to future development activities as a result of underlying hydrogeology, soil salinity, acid sulphate soils and geotechnical conditions across the majority of the PSP area is likely to be low
- The preliminary soils sampling confirmed soils confirmed the majority of the soils across the PSP area ranged between non-saline to slightly saline soils (Section 5.2.2) and the risk of dryland salinity is considered low across the PSP area
- Isolated areas of potential salinity may be present with areas of shallow groundwater through the central portion of the PSP area (inferred shallow groundwater of moderate to high salinity, shown on Figures 4 and 5) and in proximity to dams and other surface water bodies (Figure 7).

7.2 Geotechnical Assessment

Based on the Risk assessment undertaken by Strata Geocience and Environmental (Appendix E) the following was concluded:

- Shallow hard rock deposits likely over significant areas of the precincts will impact excavation activities including excavation of service trenches, road cutting, pile inserts and foundation construction.
- Aerialisation of dust likely when bulk earthworks conducted in drier periods.
- Slope stability across the precinct is typically considered to be of low risk
- Bearing capacity for soils is considered to be of low risk with capacities up to 100 kPa in natural clays providing adequate drainage is allowed for
- Soil reactivity (expansion and contraction) is considered to be a high risk with predicted values in the order of 75mm
- Due to the small particulate size of clayey silts and silty clays there is a moderate risk of erosion
- Perched water tables over endemic clays (where present) are likely throughout wetter months

8 **RECOMMENDATIONS**

Based on the above Beveridge Williams and Strata Geoscience and Environmental have made the following recommendations:

 Further precinct designs should be carried out on the basis of soils within the precinct area ranging between non-saline to moderately saline soils (Section 5.2.2) including appropriate construction materials proposed to be in direct contact with underlying natural soils or groundwater used in any precinct development works are sufficiently rated for use in the observed site conditions and proposed use

- Prior to detailed design (drainage, subdivision or underground infrastructure alignments) a
 precinct wide OR development specific physical groundwater investigation through the areas
 identified with shallow (<5 m) and potential saline waters (TDS concentrations indicated
 between 7,000 13,000 mg/L), as shown on Figures 4 and 5 respectively, including a
 gauging/sampling round to confirm the groundwater flow direction and hydrogeological
 conditions to confirm risk of groundwater intrusion during excavation or bulk earthworks
 within the precinct area and the management measures required for any water intrusion
 which may be encountered.
- Where shallow groundwater is encountered (from further physical hydrogeological investigations detailed above) and potential for upwards intrusion into future drainage and /or retention basins is confirmed, a clay (or similar) capping barrier should be designed to minimise upward intrusion of potentially saline waters into proposed stormwater systems and retaining basins.
- Based on the moderate to high reactivity (expansion and contraction with changing moisture content) reported within BH05, BH16 and BH17 (shown on Figure 8), consideration should be made where structures are proposed to be in contact with the identified grey silty CLAY/clayey SILT in which infrastructure and structures should:
 - Be constructed with materials suitable for use within moderately reactive soils in-line with the recommendations detailed in Strata Geosciences report (presented in Appendix E including:
 - Pad, slab and strip footings are acceptable foundation solutions only when founding in underlying natural Silty CLAYS
 - All piers/piles MUST,
 - Penetrate through any uncontrolled fill, upper Clayey SILTS (ML) and into firm to stiff underlying Silty CLAYS (CL/CH),
 - Be founded at a minimum of 1.5 m below the existing ground surface (or refusal). This recommendation may be revised subject to review of specific development plans when available.
 - Have a maximum end bearing of 100 Kpa and a maximum skin friction of 15Kpa below the first meter of natural soils; and
 - A maximum pile spacing of 2.0 m is recommended for Natural CLAYS
 - A CBR range value of 3-6 % be adopted for subgrade materials used in road and utility infrastructure
 - Any battering carried out as art of the future precinct development will need be between 30 degrees (fill, sands and soft-firm clays) to 45 degrees (stiff clays, dense sandy clays and clayey gravels), however, Given that soils will unlikely be at dry to slightly moist moisture contents, an engineered design solution for any shoring and retaining of pit walls will be required

- Retaining wall design and specifications must comply with recommendations detailed in Section 3.4 of Strata Geoscience and Environmnetal's geotechnical assessment report (Appendix E)
- Due to the sub-soils being prone to dispersion it is recommended that:
 - Bulk storages have excavated surfaces treated with gypsum and are lined to prevent potential soil dispersion/erosion and the resultant risks associated with structural infrastructure failure and water quality decline; AND
 - That an specific Erosion Risk Assessment and Soil and Water Management Plan be commissioned and implemented prior to commencing site development works.
- Where possible, adequate buffer fill constructed from a low reactivity medium (such as crushed rock packing) should be used between concrete structures and the moderate to high reactivity grey silty CLAY/clayey SILT.
- Due to the likelihood of perched water tables over endemic clays in wetter months, drainage is required where foundations/utilities/roads are founded. Existing dams should not be used as subdivisional development areas without further site specific intensive geotechnical assessment.
- Dust mitigation measures are to be put in place for areas of sparsely vegetated or cleared areas during future development works within the precinct area due to the high likelihood of aerialisation during the dryer months of the year
- Where backfilling of existing dams are required as part of landscaping for future development where these can-not be incorporated into stormwater design elements or retained as landscaping/recreation amenities the following must be undertaken:
 - Dam waters are tested in line with Melbourne Water requirements to ensure release waters are not considered to pose risk to the environment (either due to chemical or salinity parameters)
 - Dam sediments are not used as a substrate for future precinct development without appropriate geotechnical and chemical testing
 - Suitably geotechnically stable fill material is to be utilised as backfill.

9 LIMITATIONS

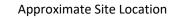
Soil and rock formations are variable. The geology maps indicate the approximate subsurface conditions inferred from on topographic profiles and broad geological surveys. Boundaries between geological and hydrogeological zones are often not distinct, but rather are transitional and have been interpreted. The precision with which subsurface conditions are indicated depends largely on the frequency and method of sampling, and the uniformity of subsurface conditions and environmental conditions.

Conditions described in this report refer only to those conditions indicated by analysis of information at the points and under the circumstances noted in the report. These conditions may differ due to the variability of concentrations in imported fill material or in natural soil as a consequence of activities on the site or adjacent sites. Conditions may vary due to changes in the environment also. Where conditions encountered at the site, proposed development or surrounding area differ from those anticipated in this report, it is a condition of this report that Beveridge Williams & Co Pty Ltd be notified of the changes and provided with an opportunity to review the recommendations of this report.

BEVERIDGE WILLIAMS & CO PTY LTD

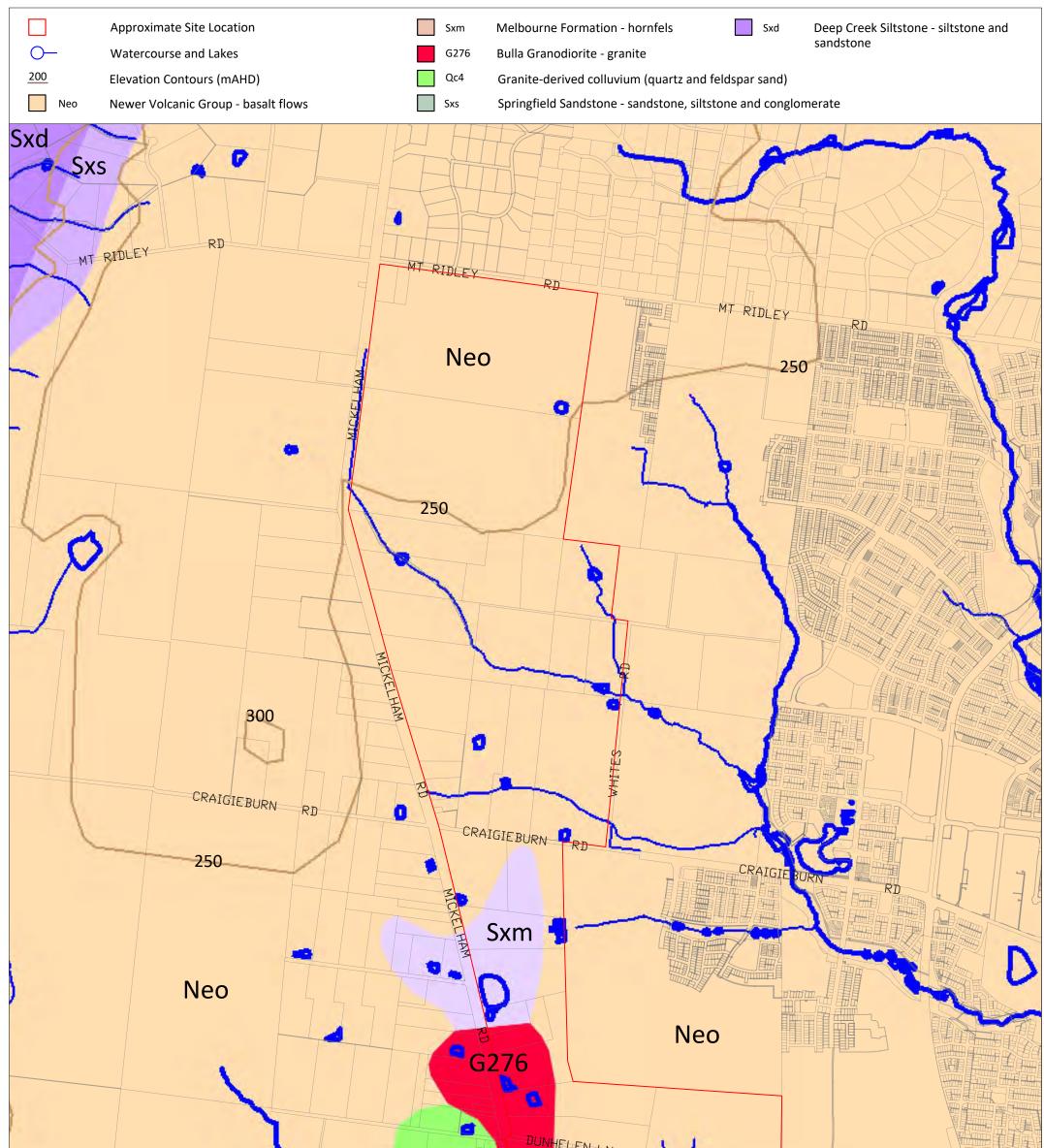
Prepared by:

Justin Tillig

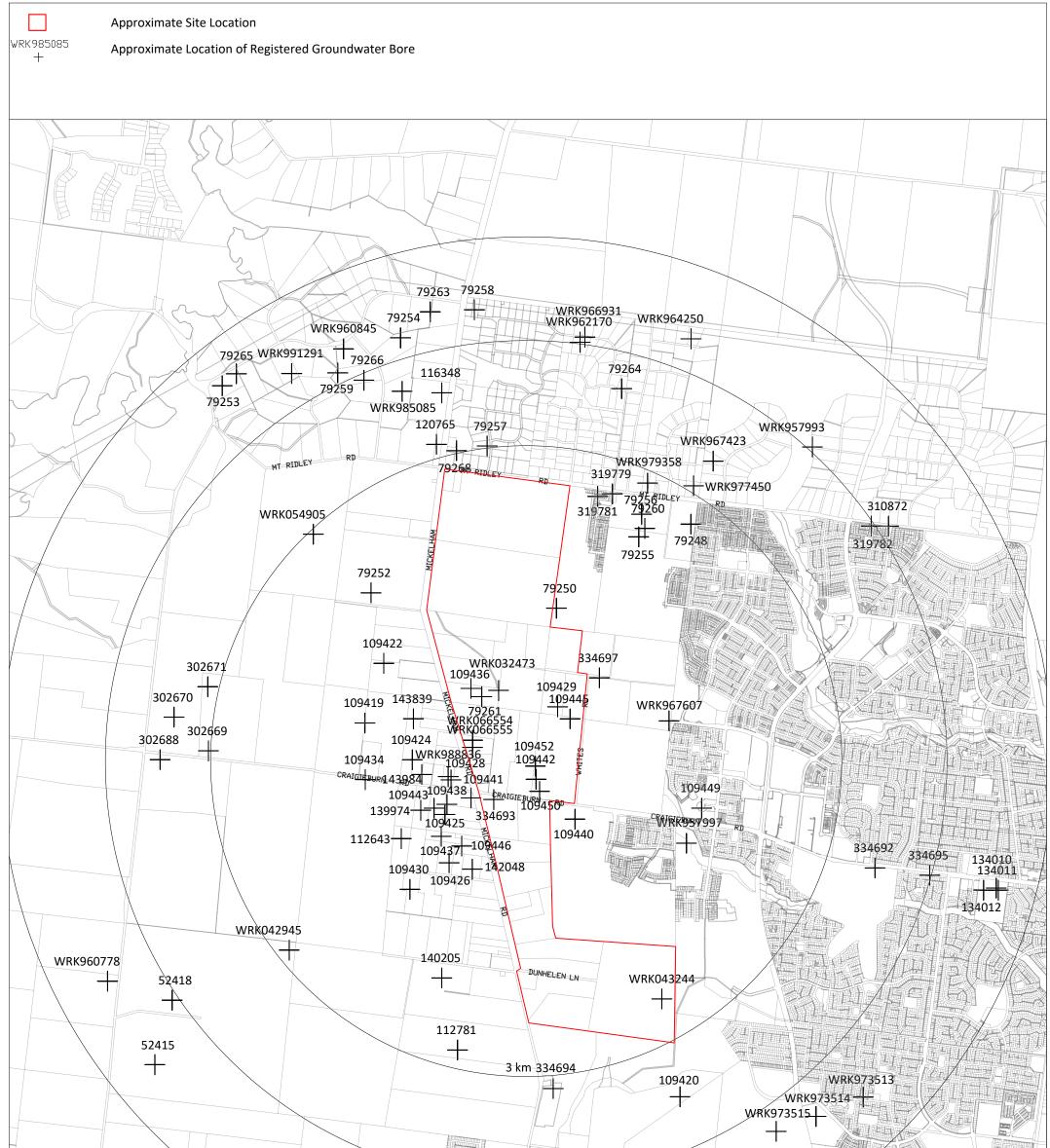

Justin Tillig Environmental Engineer

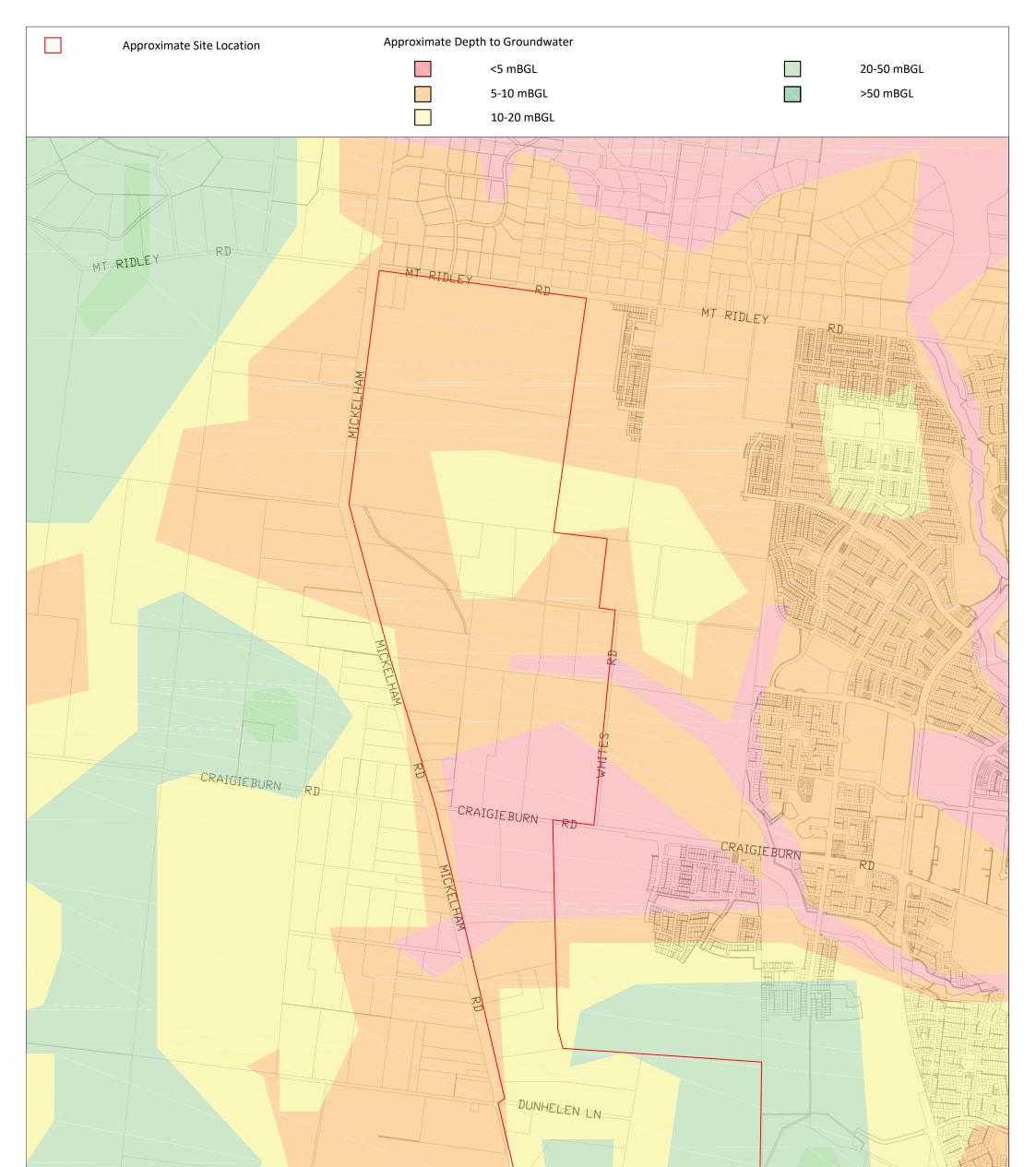
Approved for issue by:

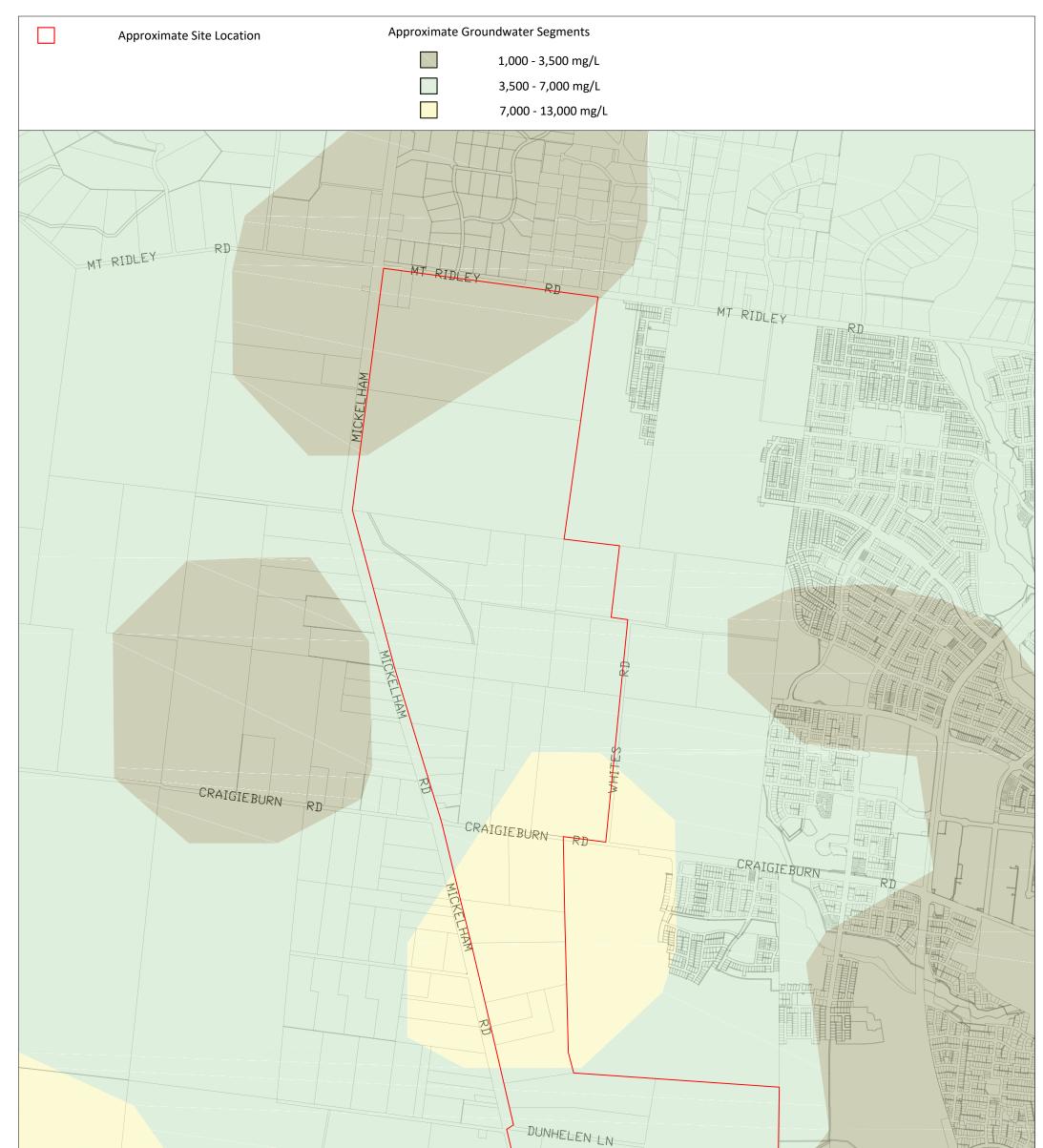
Adam Hayes Senior Environmental Scientist

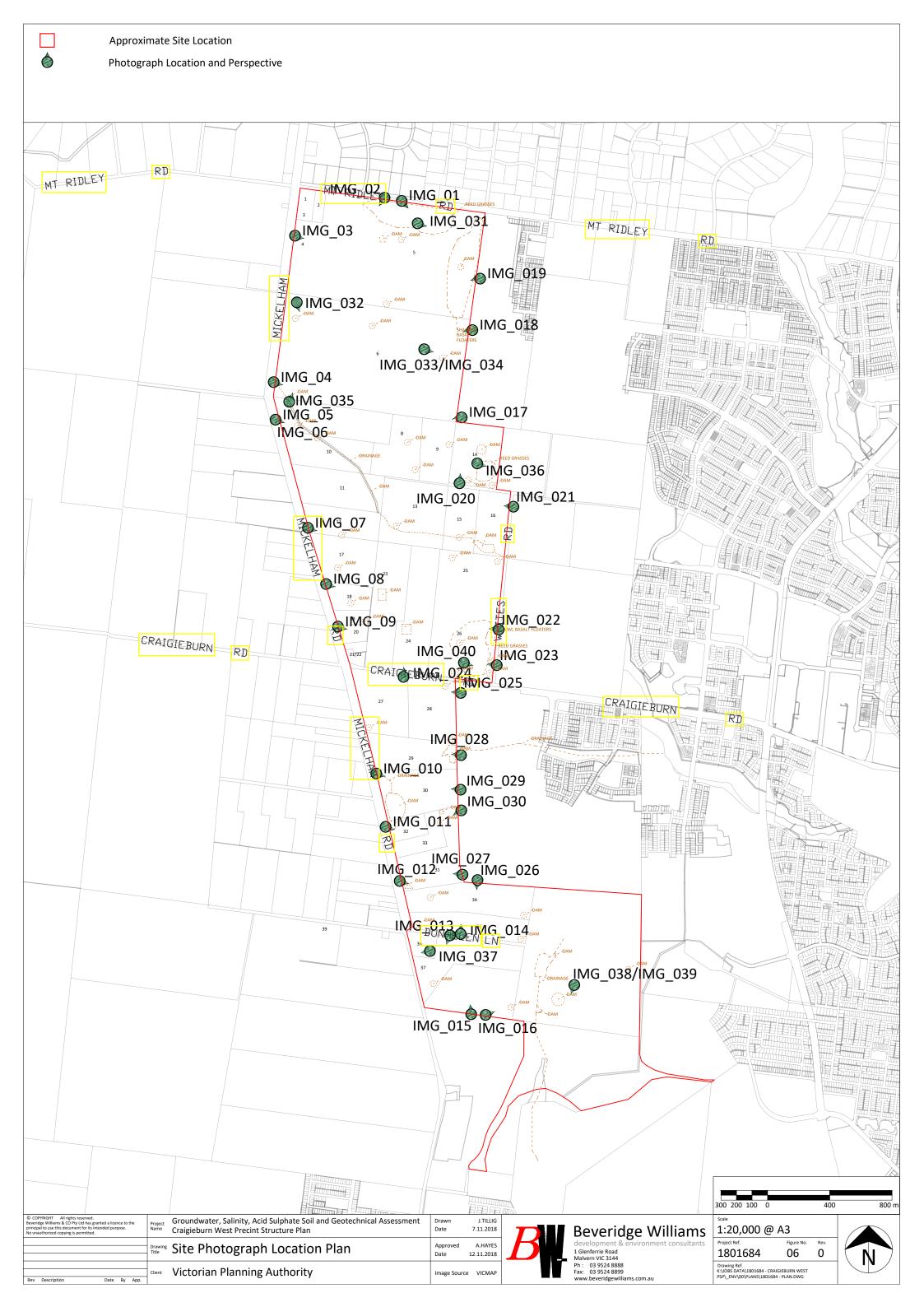

FIGURES

- FIGURE 1 SITE LOCATION PLAN
- FIGURE 2 REGIONAL GEOLOGY, TOPOGRAPHY AND WATERCOURSE PLAN
- FIGURE 3 WMIS DATABASE PLAN
- FIGURE 4 APPROXIMATE GROUNDWATER DEPTH PLAN
- FIGURE 5 APPROXIMATE GROUNDWATER SEGMENTS PLAN
- FIGURE 6 SITE PHOTOGRAPH LOCATION PLAN
- FIGURE 7 SITE OBSERVATION PLAN
- FIGURE 8 SAMPLE LOCATION PLAN




		DUNHELEN LN		
© COPYRIGHT All rights reserved. Beveridge Williams & CO Pty Ltd has granted a licence to the principal to use this document for its intended purpose. No unauthorized copying is permitted.	Project Groundwater, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West Precint Structure Plan	Drawn J.TILLIG Date 22.10.2018	Beveridge Williams	Scale 1:20,000 @ A3
	Drawing Title Site Location Plan	Approved A.HAYES Date 05.11.2018	1 Glenferrie Road Malvern VIC 3144	Project Ref. Figure No. Rev. 1801684 01 0
Rev Description Date By App.	Client Victorian Planning Authority	Image Source NEARMAP	Ph : 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Drawing Ref. K:\JOBS DATA\1801684 - CRAIGIEBURN WEST PSP_ENV\00\PLANS\1801684 - PLAN.DWG


	200 Qc4		INHELEN LN	200	250	
© COPYRIGHT All rights reserved. Beveridge Williams & CO Pty Ltd has granted a licence to the principal to use this document for its intended purpose. No unauthorized copying is permitted.	ProjectGroundwater, Salinity, Acid Sulphate Soil and Geotechnical AssessmentNameCraigieburn West Precint Structure Plan	Drawn Date 22	J.TILLIG 2.10.2018	Beveridge Williams	scale 1:20,000 @ A3	
	Drawing Regional Geology, Topography and Watercourse Plan		A.HAYES 5.11.2018	1 Glenferrie Road Malvern VIC 3144	Project Ref. Figure 1801684 02	
Rev Description Date By App.	client Victorian Planning Authority	Image Source N	NEARMAP	Ph : 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Drawing Ref. K:\JOBS DATA\1801684 - CRAIGIEBURN V PSP_ENV\00\PLANS\1801684 - PLAN.DV	NEST


		52428	WRK973516 WRK056556	
		109453 109454	VRK043281	
	109432	WR	<u>+</u> К032833	
		5 km		
				400 200 0 500 1000 1500 m
© COPYRIGHT All rights reserved. Beveridge Williams & CO Pty Ltd has granted a licence to the principal to use this document for its intended purpose. No unauthorized copying is permitted.	Project Name Craigieburn West Precint Structure Plan	Drawn J.TILLIG Date 25.10.2018	Beveridge Williams	scale 1:35,000 @ A3
	Drawing WMIS Database Plan	Approved A.HAYES Date 05.11.2018	development & environment consultants 1 Glenferrie Road Malvern VIC 3144	Project Ref. Figure No. Rev. 1801684 03 0
Rev Description Date By App.	client Victorian Planning Authority	Image Source WMIS/VICMAP	Ph : 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Drawing Ref. K:\JOBS DATA\1801684 - CRAIGIEBURN WEST PSP_ENV\00\PLANS\1801684 - PLAN.DWG

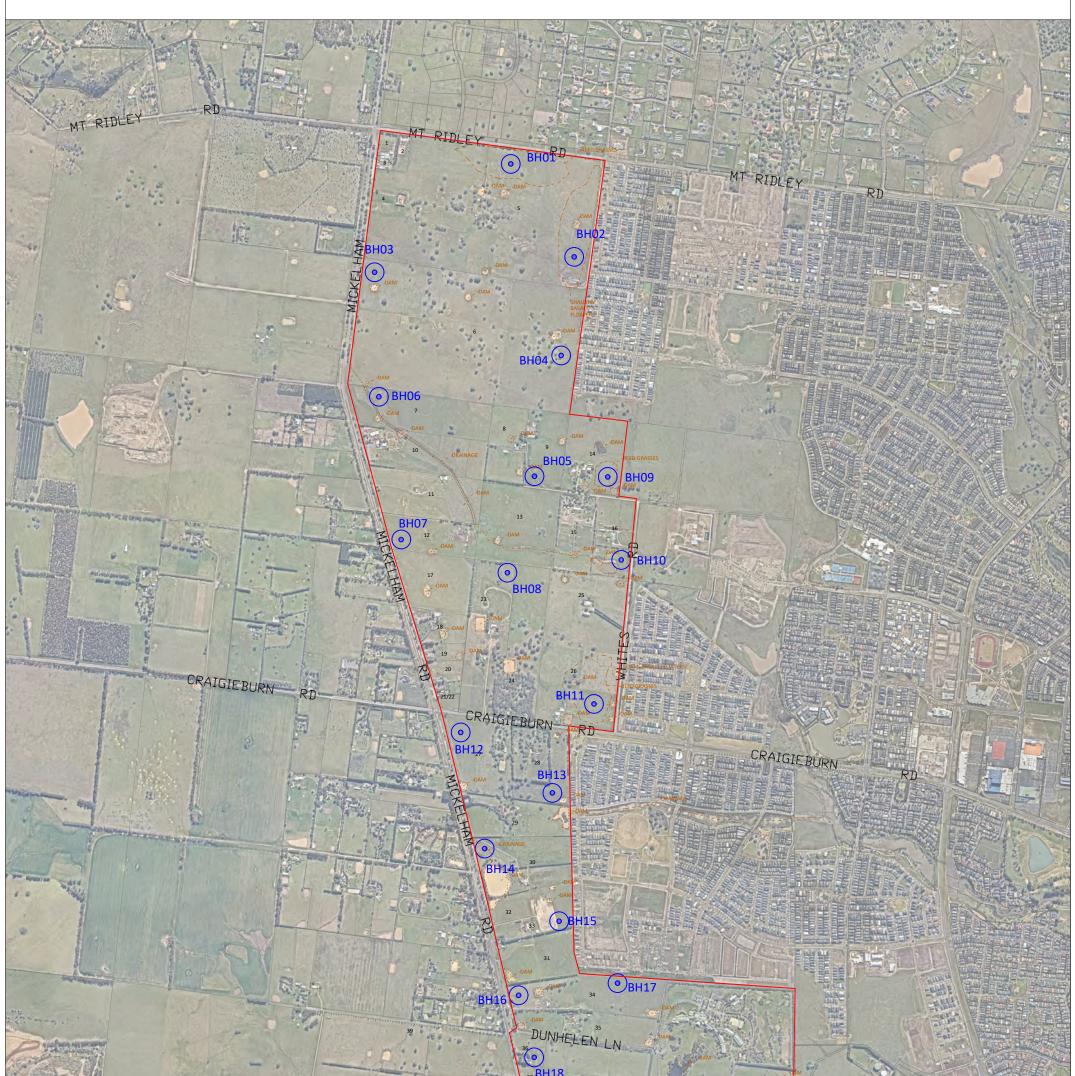


	epth information adapted ria's Groundwater data					800 m
© COPYRIGHT All rights reserved. Beveridge Williams & CO Pty Ltd has granted a licence to the principal to use this document for its intended purpose. No unauthorized copying is permitted.	Project Groundwater, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West Precint Structure Plan	Drawn Date	J.TILLIG 01.11.2018	Beveridge Williams 1:20,000 @ A	3	
	Praving Approximate Groundwater Depth Plan	Approved Date	A.HAYES 05.11.2018	development & environment consultants	Figure No. Rev. 04	
Rev Description Date By App.	Client Victorian Planning Authority	Image Sourc	ce VVG	Ph: 03 9524 8888 Drawing Ref. Fax: 03 9524 8899 K:\UOBS DATA\1801684 - CRAIGIE	Drawing Ref. K-VJOBS DATA/1801684 - CRAIGIEBURN WEST PSPL_ENV/00/PLANS/1801684 - PLAN.DWG	

Note: groundwater segments information adapted from Visualising Victoria's Groundwater data			
			300 200 100 0 400 800 m
© COPYRIGHT All rights reserved. Beveridge Williams & CO PPy Ltd has granted a licence to the principal to use this document for 1s intended purpose. No unauthorized copying is permitted. Groundwater, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West Precint Structure Plan	Drawn J.TILLIG Date 1.11.2018	Beveridge Williams	scale 1:20,000 @ A3
Drawing Approximate Groundwater Segments Plan	Approved A.HAYES Date 05.11.2018	1 Glenferrie Road Malvern VIC 3144	Project Ref. Figure No. Rev. 1801684 05 0
Rev Description Date By App.	Image Source VVG	Ph : 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Drawing Ref. K.\D085 DATA\1801684 - CRAIGIEBURN WEST PSP_ENV\00\PLANS\1801684 - PLAN.DWG

 \bigcirc

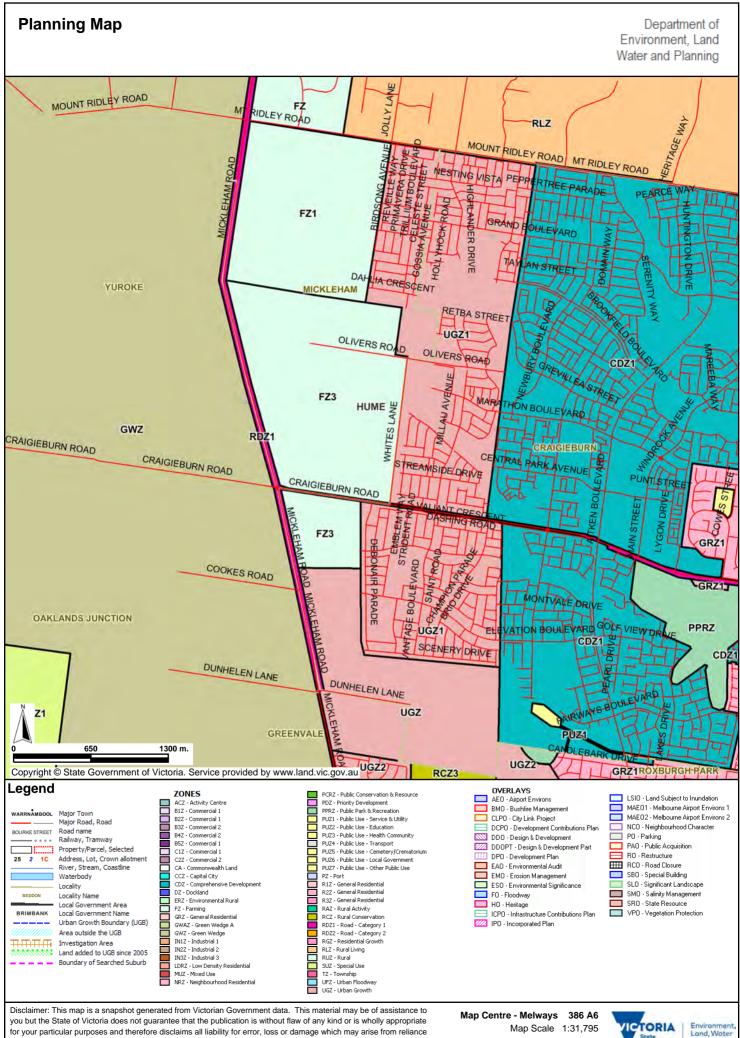
Photograph Location and Perspective



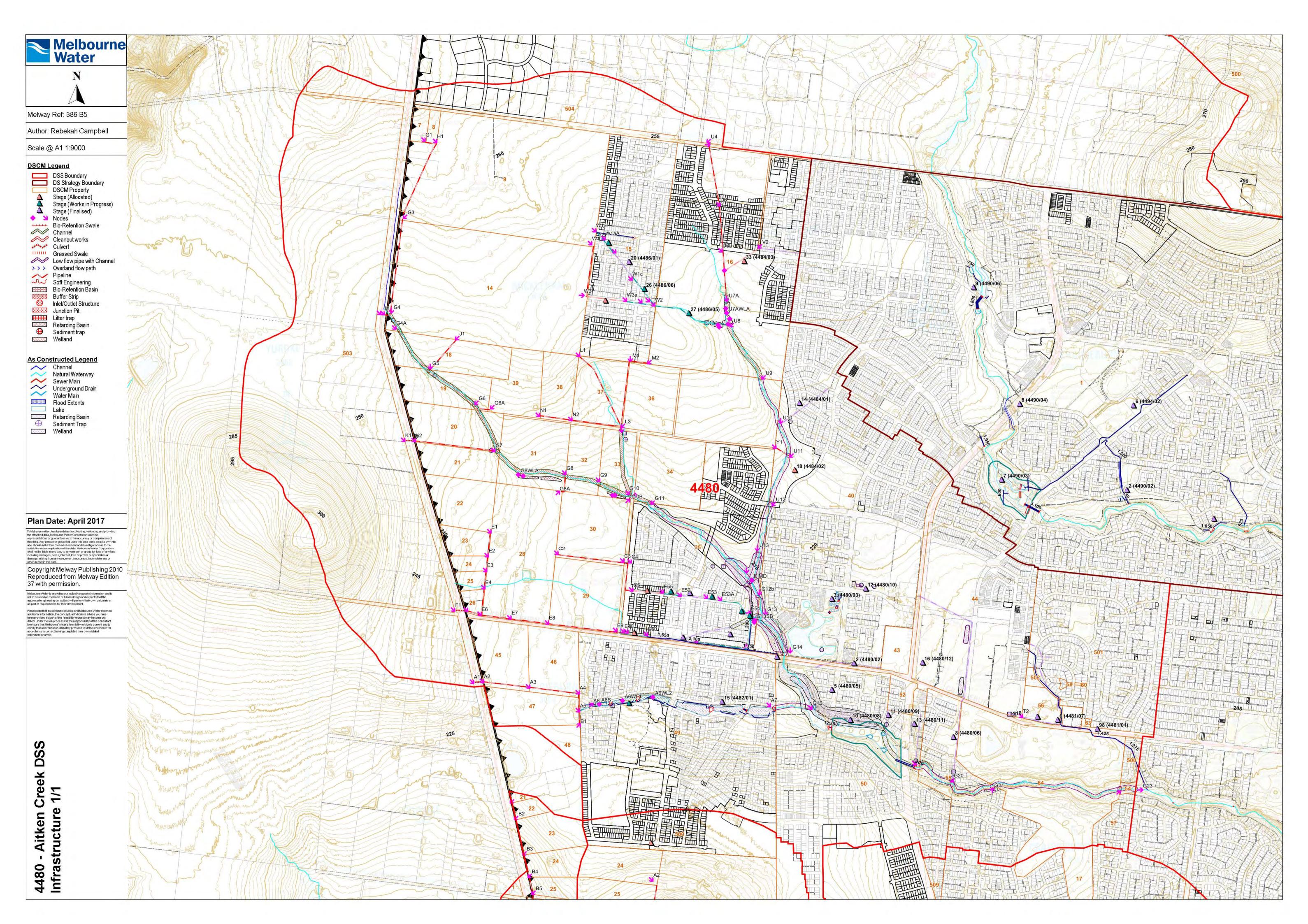
		DUNHEL	DAM DAM DAM DAM	
© COPYRIGHT All rights reserved. Beveridge Williams & CO Pty Ltd has granted a licence to the principal to use this document for its intended purpose. No unauthorized copying is permitted.	Project Groundwater, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West Precint Structure Plan	Drawn J.TILLIG Date 7.11.2018	Beveridge Williams	scale 1:20,000 @ A3
	True Site Observation Plan	Approved A.HAYES Date 12.11.2018	1 Glenferrie Road Malvern VIC 3144	Project Ref. Figure No. Rev. 1801684 07 0
Rev Description Date By App.	Client Victorian Planning Authority	Image Source VICMAP	Ph : 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Drawing Ref. K:\DBS DATA\1801684 - CRAIGIEBURN WEST PSP_ENV\00\PLANS\1801684 - PLAN.DWG

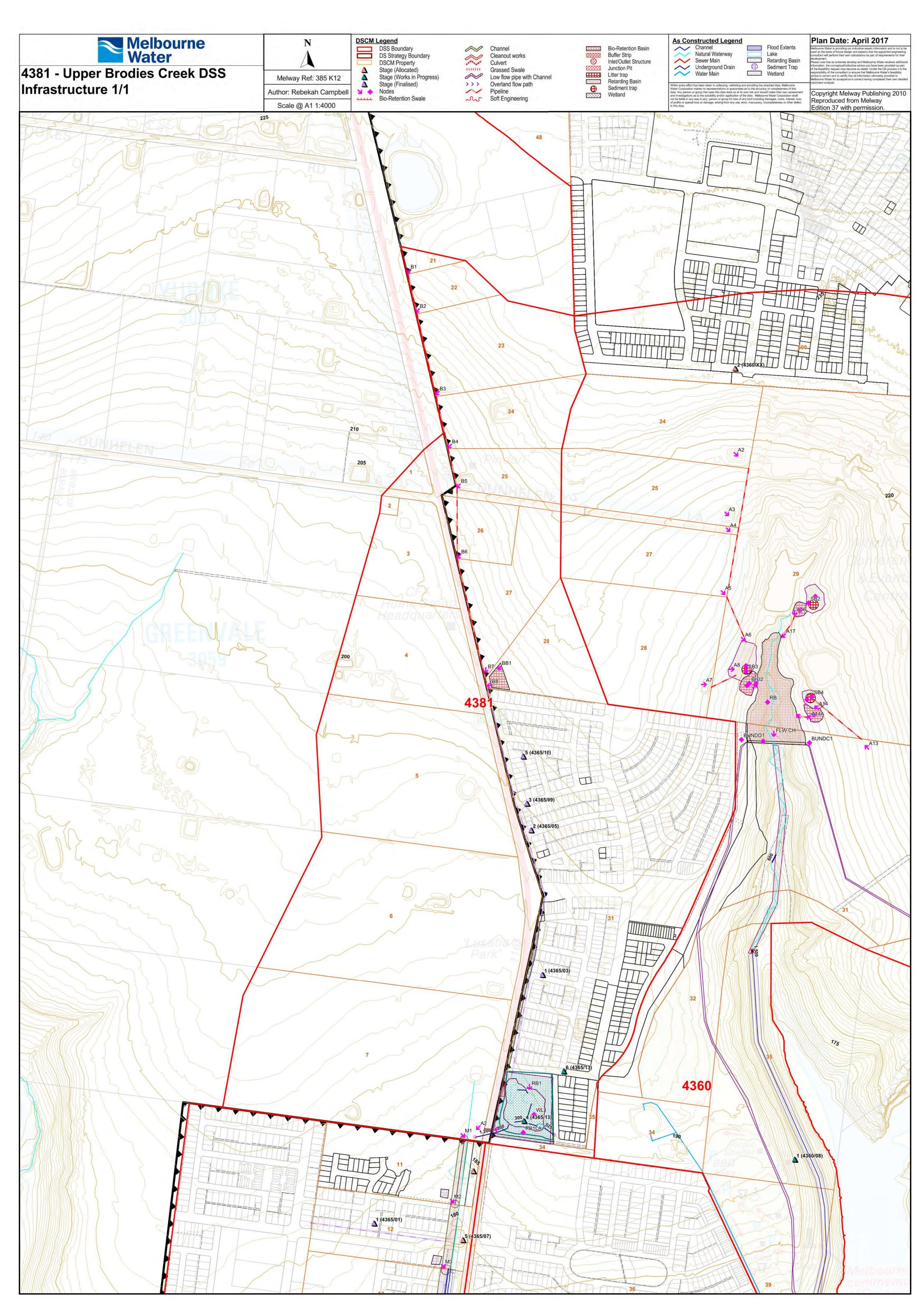
Approximate Site Location

•


Geotechnical Borehole and Salinty Sample Location

		37BH18	S DAM	-DAM		
A COMPLET ALL ALL AND A					300 200 100 0	400 800 m
© COPYRIGHT All rights reserved. Beveridge Williams & CO Pty Ltd has granted a licence to the principal to use this document for its intended purpose. No unauthorized copying is permitted.	Project Groundwater, Salinity, Acid Sulphate Soil and Geotechnical Assessment Craigieburn West Precint Structure Plan	Drawn J.T Date 7.12.	11LIG 2018	Beveridge Williams	scale 1:20,000 @ A3	
	Drawing Sample Location Plan	Approved A.H. Date 14.12.	AYES 2018	development & environment consultants 1 Glenferrie Road Malvern VIC 3144	Project Ref. Figure No. 1801684 08	Rev.
Rev Description Date By App.	Client Victorian Planning Authority	Image Source NEAR		Ph : 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Drawing Ref. K:\JOBS DATA\1801684 - CRAIGIEBURN WEST PSP_ENV\00\PLANS\1801684 - PLAN.DWG	


APPENDIX A PLANNING AND MELBOURNE WATER DRAINAGE SCHEME MAPS



upon it. All persons accessing this information should make appropriate enquiries to assess the currency of data.

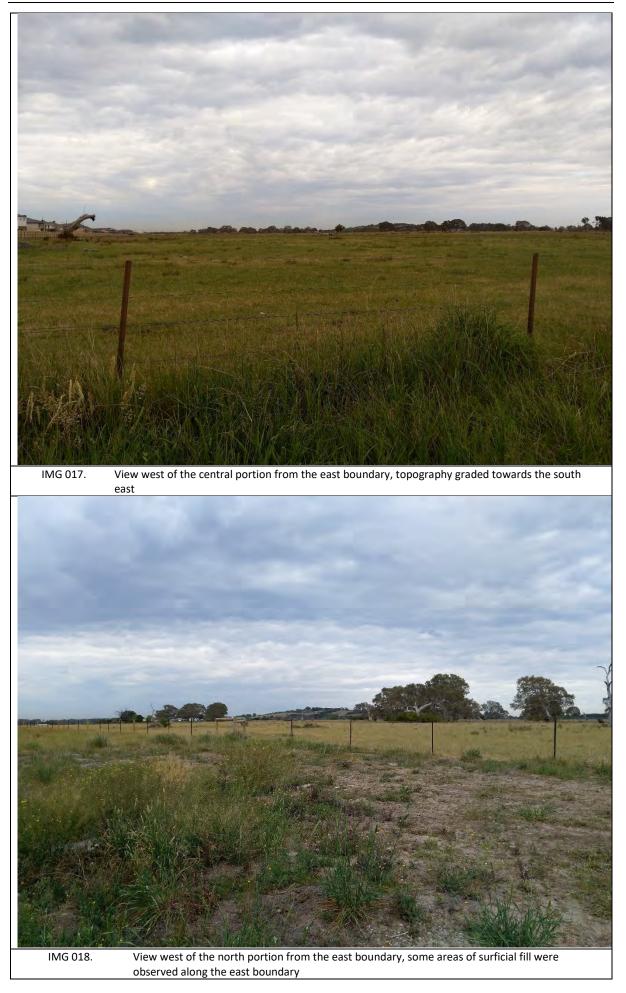
November 7, 2018 1:41:27 PM

APPENDIX B SITE PHOTOGRAPHS

Beveridge williams

BEVERIDGE WILLIAMS

BW BEVERIDGE WILLIAMS



Beveridge williams



BEVERIDGE WILLIAMS

IMG 032. 1760 Mickleham Rd, Mickleham near BH03, the property as grassed. Onsite dams were observed to be cutdown and basalt floaters were observed with in the subsurface soils.

towards the south east and west.

IMG 036. South east portion of 220 Olivers Rd, Mickleham, the property as grassed generally slpoped to the south east with dams located along low points to intercept surface water runoff. An area of reed grass was observed through the surfaces water drainage alignment.

APPENDIX C WMIS DATABASE SEARCH Client: Victorian Planning Authority Location: Craigieburn West PSP

Table 1 Visualising Victoria's Groundwater Search

Site Details

		1		ĺ.	1			1	1		Distance			
											from			
		Bass					Leasting	Fasting	N a with the se		-	Data	Data	
D	Discottor	Bore	T	• •••••	Latitude	Longitude	Location	Easting	Northing	Мар	Centre of	Date	Date	11-1
Bore ID	Direction	Onsite	Туре	Status	(GDA94)	(GDA94)	method	(MGA)	(MGA)	zone	Site (m)	commenced	completed	Use
109452	ESE	Yes	DRILLED BORE			144.8860217	TRANSLATION		5837824.2	55	381	5/06/1989	3/07/1989	STOCK,DOMESTIC
109442	SSE	Yes	DRILLED BORE		-37.588862	144.8860577	TRANSLATION		5837699.2	55	309	28/04/1981	29/04/1981	STOCK,DOMESTIC
109450	SSE	Yes	DRILLED BORE		-37.589905	144.8864128	TRANSLATION		5837584.2	55	307	19/04/1989	22/04/1989	DOMESTIC
334693	SW	Yes	DRILLED BORE				TRANSLATION		5837506.2	55	137	12/04/1970	12/04/1970	NON GROUNDWATER
WRK066555	WNW	Yes	DRILLED BORE		-37.586012	144.8792961		312755	5838002	55	561	1/12/2011	1/12/2011	OBSERVATION
WRK066554	WNW	Yes	DRILLED BORE		-37.5854	144.8793361	NOT KNOWN	312757	5838070	55	617	1/12/2011	1/12/2011	OBSERVATION
109445	NE	Yes	DRILLED BORE		-37.583758	144.8898706	TRANSLATION		5838273.2	55	937	25/02/1983	1/03/1983	STOCK, DOMESTIC
109429	NNE	Yes	DRILLED BORE		-37.582698	144.8885536	TRANSLATION		5838388.2	55	965	30/10/1971	30/10/1971	STOCK, DOMESTIC
109441	WSW	No	DRILLED BORE	Used	-37.59034	144.8790169	TRANSLATION	312741.2	5837521.2	55	347	6/10/1980	10/10/1980	STOCK, DOMESTIC
109440	SE	No	DRILLED BORE		-37.592351	144.8901487	TRANSLATION	313729.2	5837320.2	55	680	1/08/1980	4/08/1980	DOMESTIC
WRK032473	NNW	Yes	DRILLED BORE	Used	-37.581179	144.8822437	TRANSLATION	313003.2	5838544.2	55	1000	27/01/1995	31/01/1995	STOCK, DAIRY, DOMESTIC
109428	W	No	DRILLED BORE	Used	-37.588752	144.8769099	TRANSLATION	312551.2	5837693.2	55	554	4/11/1971	4/11/1971	STOCK, DOMESTIC
79261	NNW	Yes	DRILLED BORE	Used	-37.581687	144.8804177	TRANSLATION	312843.2	5838484.2	55	967	5/08/1982	5/08/1982	STOCK, DOMESTIC
WRK988836	W	No	DRILLED BORE	Used	-37.588469	144.8766103	NOT KNOWN	312524	5837724	55	589	26/01/2009	26/01/2009	DOMESTIC AND STOCK
109438	WSW	No	DRILLED BORE	Not Used	-37.590843	144.8764089	TRANSLATION	312512.2	5837460.2	55	581	1/11/1978	1/11/1978	DOMESTIC AND STOCK
109436	NW	Yes	DRILLED BORE		-37.580954	144.8792717	TRANSLATION		5838563.2	55	1073	7/02/1977	7/02/1977	STOCK
109425	WSW	No	DRILLED BORE			144.8761689	TRANSLATION		5837364.2	55	622	31/12/1962	31/12/1962	NOT KNOWN
109443	WSW	No	DRILLED BORE				TRANSLATION		5837424.2	55	707	9/04/1981	9/04/1981	STOCK,DOMESTIC
143984	W	No	DRILLED BORE				TRANSLATION		5837744.2	55	836	11/12/1999	11/12/1999	STOCK,DOMESTIC
109446	SW	No	DRILLED BORE			144.877904	TRANSLATION		5837064.2	55	652	31/05/1985	31/05/1985	STOCK,DOMESTIC
334697	NE	No	DRILLED BORE		-37.580301	144.8931165	TRANSLATION		5838663.2	55	1416	13/09/1971	13/09/1971	NON GROUNDWATER
109437	SW	No	DRILLED BORE		-37.59357	144.87572	TRANSLATION		5837156.2	55	742	15/06/1978	26/06/1978	STOCK,DOMESTIC
109424	W	No	DRILLED BORE		-37.586956	144.8727939	TRANSLATION		5837884.2	55	963	31/12/1962	31/12/1962	NOT KNOWN
139974	WSW	No	DRILLED BORE		-37.591296	144.873576	TRANSLATION		5837404.2	55	836	20/02/1999	20/02/1999	STOCK,DOMESTIC
143839	WNW	No			-37.583446	144.8730068	TRANSLATION		5838274.2	55	1151	9/09/1999	9/09/1999	STOCK,DOMESTIC
142048	SSW	No	DRILLED BORE		-37.59644	144.878979	TRANSLATION		5836844.2	55	782	1/11/1999	1/11/1999	DOMESTIC
142048	SW	No	DRILLED BORE		-37.595855	144.876504			5836904.2	_	852	31/12/1962	31/12/1962	NOT KNOWN
		-	-				TRANSLATION			55				
112643	WSW	No	DRILLED BORE			144.871413	TRANSLATION		5837134.2	55	1090	19/01/1992	19/01/1992	STOCK, DOMESTIC
WRK967607	ENE	No	DRILLED BORE			144.9005054	TRANSLATION		5838254.2	55	1688	21/11/2005	22/11/2005	DOMESTIC AND STOCK
79250	N	No	DRILLED BORE		-37.574246	144.8886674	TRANSLATION		5839326.2	55	1840	31/12/1970	31/12/1970	NOT KNOWN
109434	W	No	DRILLED BORE			144.867686	TRANSLATION		5837696.2	55	1357	31/05/1976	31/05/1976	STOCK,DOMESTIC
109419	W	No	DRILLED BORE			144.8677899	TRANSLATION		5838234.2	55	1516	21/05/1962	21/05/1962	NOT KNOWN
109422	WNW	No	DRILLED BORE			144.8699618	TRANSLATION		5838801.2	55	1718	31/12/1970	31/12/1970	STOCK,DOMESTIC
109430	SW	No	DRILLED BORE			144.8722171	TRANSLATION		5836652.2	55	1291	30/07/1973	30/07/1973	STOCK,DOMESTIC
WRK957997	SSE	No	DRILLED BORE				NOT KNOWN		5837091	55	1760	14/11/2004	15/11/2004	OBS., DRYLAND SAL. BORE NTWRK
109449	ESE	No	DRILLED BORE				TRANSLATION		5837424.2	55	1847	10/02/1988	10/02/1988	STOCK,DOMESTIC
79252	NW	No	DRILLED BORE			144.8687537	TRANSLATION		5839472.2	55	2322	9/02/1974	9/02/1974	STOCK
140205	SSW	No	DRILLED BORE		-37.605704	144.8754312	TRANSLATION		5835809.2	55	1854	24/01/2000	24/01/2000	STOCK, DOMESTIC
79255	NNE	No	DRILLED BORE	Used	-37.568298	144.8976892	TRANSLATION	314335.2	5840004.2	55	2758	16/01/1980	1/02/1980	STOCK, DOMESTIC
79260	NNE	No	DRILLED BORE	Used	-37.567589	144.8983662	TRANSLATION	314393.2	5840084.2	55	2856	1/06/1982	1/06/1982	STOCK, DOMESTIC
79256	NNE	No	DRILLED BORE	Not Used	-37.566367	144.8980602	TRANSLATION	314363.2	5840219.2	55	2964	20/01/1980	2/07/1982	NOT KNOWN
WRK043244	ESE	Yes	DRILLED BORE	Used	-37.607792	144.8990753	CALCULATED I	314555	5835610	55	2425	10/05/2003	11/05/2003	IRRIGATION
319781	NNE	No	DRILLED BORE	Used	-37.564751	144.8933732	TRANSLATION	313945.2	5840389.2	55	2973	23/04/1970	23/04/1970	NON GROUNDWATER
319779	NNE	No	DRILLED BORE	Used	-37.564563	144.8949642	TRANSLATION	314085.2	5840413.2	55	3039	31/12/1965	31/12/1965	NON GROUNDWATER
79248	NNE	No	DRILLED BORE			144.9033331	TRANSLATION		5840125.2	55	3114	30/05/1962	30/05/1962	NOT KNOWN
112781	S	No	DRILLED BORE		-37.611904	144.8769543	TRANSLATION		5835124.2	55	2478	27/03/1992	29/03/1992	STOCK,DOMESTIC
WRK042945	SW	No			-37.60302	144.8590834	TRANSLATION		5836074.2	55	2546	16/12/1994	19/12/1994	INDUSTRIAL
WRK979358	NNE	No	DRILLED BORE		-37.563704			314419	5840516	55	3257	16/02/2007	17/02/2007	DOMESTIC AND STOCK
WRK054905	NW	No	DRILLED BORE		-37.567436	144.8626934	GLOBAL POSIT		5840030	55	3095	15/02/2010	16/02/2010	DOMESTIC AND STOCK
79257	N	No			-37.560223	144.8816033	TRANSLATION		5840868.2	55	3333	1/09/1980	14/09/1980	STOCK, DOMESTIC
302669	W	No	DRILLED BORE				TRANSLATION		5837969.2	55	2869	31/12/2027	31/12/1927	NON GROUNDWATER
	N	No							5840824.2					
79268	IN		DRILLED BORE	Usea	-37.560561	144.8782994	TRANSLATION	1212003.2	0040824.2	55	3319	5/04/1990	5/04/1990	STOCK, DOMESTIC

Produced By: J.Tillig Checked By: 8/11/2018

Job Ref: 1801684 Pages 1 of 4

Bore ID Direction Onsite Type Status (GDA94) Location (GDA94) Restored (GDA94) Northing Morthing Kanp Centre of Land Date Date WR4877450 NNE No DRILLED BORE Used 37.564027 144.9037169 NOTKNOWN 314827 5840490 55 3437 15022007 16022007 16022007 16022007 16022007 16022007 16022007 16022007 160022007 10067005 1200670 10067005 1200670 10067005 1200707 170041741 13143 1549404842 55 374 110672007 11067005 11067005 11067005 11067005 11067005 11067005 11067005 11067005 1106701100011111111905 1100711190	,
Bore Instruction Direction Part State Latitude Longitude Location Easing Northing Map Centre of Date Date VIPR/S77450 NNE No DRILLED BORE Used -37.564027 144.9037169 NOT NUOWN 314857 58.40430 55.3437 15022007 16022007 DOMESTIC AND S 33694 E No DRILLED BORE Used -37.554027 144.9037169 NOT NON 3120322 58.38172 25.5 2834 46031707 26031707 NON GROLINDWA 33694 E No DRILLED BORE Used -37.556986 144.971524 FRAISLATION 3124322 5843754 251 3141 106/2006 106/2006 DOMESTIC AND S 3026670 W No DRILLED BORE Used -37.561985 144.907893 TRAISLATION 315022 5837862 55 3314 11021970 NON GROLINDWA 302687 W No DRILLED BORE Used -37.565658 144.8907663 TRAISLATION 3156212	
Bore ID Direction Onsite Type Status (GDA94) (GDA94) (MGA) (MGA) (MGA) zone Site (m) commenced completed Use VRK97740 W No DRILLED BORE Used 37.580.297 144.8039701 TANISLATION 31023.2 5834571.2 55 3026 31/12/2027 31/12/1927 NON GROUNDWA 12075 NNW No DRILLED BORE Used 37.559981 144.877654.1 FRANSLATION 31541.2 5840767.2 55 3274 106/2005 1060/2005 1060/2005 1060/2005 1060/2005 1060/2005 1060/2005 1060/2005 106/2005 <td< th=""><th></th></td<>	
NVRK977450 NNE No DRILLED BORE Used 37.56402 144.9037169 000 K NOWN 314857 584.040 55 33.37 110/02/2007 DOM/S2007 DOM/STIC AND S 320671 W No DRILLED BORE Used 37 615396 144.871532 FRANSLATION 315322.2 683.877.2 55 3244 200/31970 NON GROUNDWA 120765 NNW No DRILLED BORE Used 37.561955 144.801684 TRANSLATION 31522.2 683.0784.2 55 3314 110/2103.3 100/2103.3 STOCKOMESTANDS 3302670 W No DRILLED BORE Used 37.561955 144.49105883 TRANSLATION 31503.2 53.836473.2 55 3313 110/2105.0 110/2105.0 NON GROUNDWA 324692 SSE No DRILLED BORE Used 37.56195.1 144.872622 TRANSLATION 31633.2 53.3663 311/21/950.0 NON GROUNDWA 324692 SSE No DRILLED BORE Used 37.555564	
302671 W No DRILLED BORE Used 37.58027 144.860701 TRANSLATION 310232 58385742 55 3026 31/12/2027 31/12/1927 NON GROUNDWA 120765 NNW No DRILLED BORE Used 37.561985 144.8871532 TRANSLATION 315222 68347572 55 284 2600/1707 2000/1707 NON GROUNDWA 302670 W No DRILLED DORE Used 37.561985 144.8906842 TRANSLATION 315043.2 564/0724.2 55 3741 11/02/2005 DOMESTIC AND S 302670 W No DRILLED DORE Used 37.56113 144.922317 TRANSLATION 316845.1 5838655.2 55 3311 11/03/1970 NON GROUNDWA 302688 W No DRILLED DORE Used 37.561341 TRANSLATION 31462.2 5834679.2 55 3313 3009/1962 30.00/1970 NON GROUNDWA 116348 N DRILLED DORE Used 37.555781	
324694 E NO ORILLED BORE Used 37 61393 144 897163 TRANSLATION 313222 8834757.2 55 2834 120/0750 26/03/1970 26/03/1970 20/04 GROUNDWA VIRK667423 NNE NO DRILLED BORE Used 37 569981 144 897663 TRANSLATION 31642.2 55 3734 10/62/005 D/0KESTC MON GROUNDWA 302670 W NO DRILLED BORE Used 37.599813 TRANSLATION 316681.2 5838290.2 55 3251 31/12/1965 N/12/1965 NO GROUNDWA 302680 W NO DRILLED BORE Used 37.5616341 144.900789 TRANSLATION 307862.2 55 3314 11/03/1970 11/03/1970 NO GROUNDWA 109420 SSE NO DRILLED BORE Used 37.555678 144.890533 TRANSLATION 31/423.2 58385 31/08/1993 31/08/1993 31/08/1993 31/08/1993 31/08/1993 31/08/1993 31/08/1993 31/08/1993 31/08/1993	
120765 NNW No DRILLED BORE Used 37.559981 144.87616542 TRANSLATION 310632 5840884.2 55 3411 18/1/2/1993 19/1/2/1993 STOCK.DOMESTIC 302670 W No DRILLED BORE Used -37.581251 4144.905832 TRANSLATION 30042.2 55 3251 31/12/1925 31/12/1927 NON GROUNDWA 302686 W No DRILLED BORE Used -37.584551 144.8456633 TRANSLATION 309612.2 55 3313 3009/1962 30/09/1962 <	
VIPR697423 INNE No DRILLED BORE Used 37.5581955 144.902832 TRANSLATION 3150432 564329.2 55 3251 31/12/10277 <td></td>	
302670 W No DRILLED BORE Used 37.58283 144.922372 TRANSLATION 309786.2 583220.2 55 3251 31/12/1267 SNO NO GROUNDWA 334692 SSE No DRILLED BORE Used 37.584645 144.942602 5837885.2 55 3314 11/03/1970 NON GROUNDWA 109420 SSE No DRILLED BORE Used 37.584645 144.97089 TRANSLATION 314728.2 5834679.2 55 3313 30/09/1962 30/07 NON GROUNDWA 116348 N No DRILLED BORE Used 37.555564 144.896213 TRANSLATION 31472.2 5834679.2 55 3313 30/09/1982 30/08/1987 ADOX 79264 NWE No DRILLED BORE Used 37.555564 144.896213 TRANSLATION 31472.2 584134.2 55 4203 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 403/1987 <td></td>	
334692 SSE No DRILLED BORE Used 37.57113 144.8456633 TRANSLATION 316581.2 858 31/12/1965 31/12/1965 NON GROUNDWA 109420 SSE No DRILLED BORE Used -37.616341 144.840789 TRANSLATION 31472.2 55 3313 30/09/1962 30/09/1962 NOT GROUNDWA 116348 N No DRILLED BORE Used -37.55578 144.890789 TRANSLATION 31472.2 55 3385 31/09/1993 31/09/1987 40/03/1987 DOMESTIC 72644 NNE No DRILLED BORE Used -37.55586 144.896213 TRANSLATION 314812 584134.2 55 3978 20/02/2008 21/02/2008 DOMESTIC AND ST 72664 NNW No DRILLED BORE Used -37.55736 144.896503 TRANSLATION 31482.2 5843954.2 55 4818 71/21988 B1/01/99 BOMESTIC AND ST 72266 NNW No DRILLED BORE Used	
302688 W No DRILLED BORE Used 37.586455 144.4966633 TRANSLATION 3009762.2 5837865.2 55 3314 11/03/1970 11/03/1970 NON GROUNDWA 109420 SSE No DRILLED BORE Used -37.616341 144.96768633 TRANSLATION 314782.2 5841374.2 55 3885 31/08/1993 DOMESTIC 7264 NNE No DRILLED BORE Used -37.555564 144.896213 TRANSLATION 31414.2 55 4023 4/03/1987 4/03/1987 4/03/1987 4/03/1987 5/00K 5/222 NOT KNOWN 3108 55 3978 2/0/02/2008 2/10/2/2008 0OMESTIC AND S 52428 E No DRILLED BORE Used -37.567812 144.8921733 TRANSLATION 311723.2 5841494.2 55 4183 7/12/1988 81/2/1988 STOCK, DOMESTIC 319782 ENE No DRILLED BORE Used -37.567812 144.9281863 TRANSLATION 31712.2	
109420 SSE No DRILLED BORE Used 37.616341 144.900789 TRANSLATION 314728.2 5834679.2 55 3313 30/09/1962 NOTKNOWN 116348 N No DRILLED BORE Used -37.5555761 144.8768663 TRANSLATION 31423.2 5841374.2 55 3813 30/09/1962 30/09/1962 NOTKNOWN 79264 NNW No DRILLED BORE Used -37.555568 144.8758922 NOT KNOWN 312686 5841389 55 3978 20/02/2008 21/02/2008 DORKLCD DORKCK,DOMESTIC 79266 NNW No DRILLED BORE Used -37.55436 144.8865144 TRANSLATION 311723.2 5841494.2 55 4183 71/21988 STOCK,DOMESTIC 319762 ENE No DRILLED BORE Used -37.557381 144.922738 TRANSLATION 31777.2 584185.2 55 4301 14/05/1970 NON GROUNDWA VRK9659793 NE No DRILLED BORE	
116348 N No DRILLED BORE Used 37.555578 144.8768563 TRANSLATION 312463.2 5841374.2 55 3885 31/08/1993 31/08/1993 DOMESTIC 79264 NNE No DRILLED BORE Used -37.555548 144.8752322 NT NOWN 31208/1987 500K 20/02/2008 20/02/2	ER
T29264 NNE No DRILLED BORE Used -37.555564 144.89213 TRANSLATION 314173.2 5841414.2 55 4023 4/03/1987 4/03/1987 STOCK VRK985085 NNW No DRILLED BORE Decom. -37.555364 144.8725922 NOT KNOWN 312086 5841389 55 3978 20/02/2008 21/02/2008 20/02/207 21/02/208 21/02/208 21/02/208 21/02/208	
WRK985085 NNW No DRILLED BORE Decom. -37.555368 144.8725922 NOT KNOWN 312086 5841389 55 3978 20/02/2008 21/02/2008 DOMESTIC AND S 52428 E No DRILLED BORE Used -37.62762 144.8865063 TRANSLATION 31343.2 5831395.4 55 4183 7/12/1988 81/19198 STOCK,DOMESTIC 319782 ENE No DRILLED BORE Used -37.567812 144.922738 TRANSLATION 316545.2 58410107.2 55 4081 4/05/1970 4/05/1970 NON GROUNDWA 334695 SSE No DRILLED BORE Used -37.557512 144.921863 TRANSLATION 315777.2 5841855.2 55 4081 4/05/1970 4/05/1970 NON GROUNDWA WRK966931 N No DRILLED BORE Used -37.657814 144.928398 TRANSLATION 313823.2 5841904.2 55 4372 12/08/2003 14/08/2019/1720 MORSTIC AND S 79259	
52428 E No DRILLED BORE Used 37.62262 144.8865063 TRANSLATION 31483.2 5833954.2 55 3628 18/10/1989 18/10/1989 STOCK,DOMESTIG 79266 NNW No DRILLED BORE Used -37.56742 144.8865043 TRANSLATION 311732.2 5841494.2 55 4183 7/12/1988 8/12/1988 STOCK,DOMESTIG 319782 ENE No DRILLED BORE Used -37.567812 144.9227238 TRANSLATION 313772.2 584107.2 55 4081 4/05/1970 NON GROUNDWA 334695 SSE No DRILLED BORE Used -37.557838 144.9281863 TRANSLATION 313777.2 5841852.2 55 4372 12/08/2003 14/05/1970 NON GROUNDWA VRRV95993 NE No DRILLED BORE Used -37.607079 144.8463596 TRANSLATION 319323.2 5641403 13/09/1974 13/09/1974 13/09/1974 13/09/1974 13/09/1974 13/09/1974 13/09/1974	
79266 NNW No DRILLED BORE Used -37.554346 144.8685144 TRANSLATION 311723.2 5841494.2 55 4183 7/12/1988 8/12/1988 STOCK,DOMESTIC 319782 ENE No DRILLED BORE Used -37.557812 144.9227238 TRANSLATION 316545.2 55 40017.2 55 4300 14/05/1970 14/05/1970 NON GROUNDWA 334695 SSE No DRILLED BORE Used -37.557838 144.921863 TRANSLATION 313777.2 5841855.2 55 4081 4/05/1970 4/05/1970 NON GROUNDWA WRK9657993 NE No DRILLED BORE Used -37.607079 144.891864 TRANSLATION 31972.2 5841895.2 55 4403 10/11/2004 11/01/1408/2003 DOMESTIC AND S 52418 WSW No DRILLED BORE Used -37.550781 144.892378 TRANSLATION 313823.2 5841904.2 55 4403 10/11/2004 13/09/1974 MISC/DOMESTIC	
319782 ENE No DRILLED BORE Used -37.567812 144.922738 TRANSLATION 316545.2 5840107.2 55 4300 14/05/1970 11/05/1970 NON GROUNDWA 334695 SSE No DRILLED BORE Used -37.557838 144.9281863 TRANSLATION 317171.2 5836786.2 55 4081 4/05/1970 4/05/1970 NON GROUNDWA WRK962170 N No NOT KNOWN Used -37.551512 144.91845 TRANSLATION 317177.2 5841855.2 55 4301 10/11/2004 11/11/2004 OBS., DRYLAND S 52418 WSW No DRILLED BORE Used -37.55108 144.802378 TRANSLATION 313823.2 5841904.2 55 4427 15/09/2004 20/09/2004 DOMESTIC AND S 79259 NNW No DRILLED BORE Used -37.567854 144.9224980 TRANSLATION 313707.2 5841904.2 55 4433 31/12/1965 31/12/1965 NON GROUNDWA 310872 ENE No<	
334695 SSE No DRILLED BORE Used -37.597838 144.9281863 TRANSLATION 317101.2 5836786.2 55 4081 4/05/1970 4/05/1970 NON GROUNDWA WRK962170 N No NOT KNOWN Used -37.551512 144.91845 TRANSLATION 313777.2 5841855.2 55 4372 12/08/2003 14/09/2003 DOMESTIC AND S S2418 WSW No DRILLED BORE Used -37.550707 144.8463596 TRANSLATION 309900.2 5835598.2 55 4403 10/11/2004 11/11/2004 0BSDRYLAND S S2418 WSW No DRILLED BORE Used -37.55108 144.8463596 TRANSLATION 31986.2 55 4403 10/11/2004 20/09/2004 DOMESTIC AND S YES9 NNW No DRILLED BORE Used -37.550787 144.872553 TRANSLATION 31473.2 5841564.2 55 4433 31/12/1965 31/12/1965 NOR GROUNDWA Y29254 NNW No DRILLED BORE <td< td=""><td></td></td<>	
WRK962170 N No NOT KNOWN Used -37.551512 144.891845 TRANSLATION 313777.2 5841855.2 55 4372 12/08/2003 14/08/2003 DOMESTIC AND S S2418 WSW No DRILLED BORE Used -37.560929 144.9165848 NOT KNOWN 315986 5840859 55 4403 10/11/2004 11/11/2004 OBS., DRYLAND S 52418 WSW No DRILLED BORE Used -37.55089 TRANSLATION 30990.2 5835582. 55 4376 13/09/1974 13/09/1974 MISCELLANEOUS WRK966931 No DRILLED BORE Used -37.55108 144.892378 TRANSLATION 313823.2 5841564.2 55 4423 24/02/1983 24/02/1983 STOCK,DOMESTIC 310872 ENE No DRILLED BORE Used -37.550787 144.8725553 TRANSLATION 312071.2 5841897.2 55 4476 1/12/1975 NOCK,DOMESTIC AND S V9254 NNW No DRIL	
WRK957993 NE No DRILLED BORE Used -37.560929 144.9165848 NOT KNOWN 315986 5840859 55 4403 10/11/2004 11/11/2004 0BS., DRYLAND S 52418 WSW No DRILLED BORE Used -37.607079 144.8463596 TRANSLATION 30990.2 5835598.2 55 3736 13/09/1974 13/09/1974 MISCELLANEOUS WRK966931 N No DRILLED BORE Used -37.55108 144.892378 TRANSLATION 31823.2 5841904.2 55 4427 15/09/2004 20/09/2004 DOMESTIC AND S 79259 NNW No DRILLED BORE Used -37.567864 144.8924908 TRANSLATION 311873.2 5841564.2 55 4333 21/02/1983 STOCK,DOMESTIC 310872 ENE No DRILLED BORE Used -37.567854 144.8725553 TRANSLATION 31162/1.2 544163 31/12/1965 NON GROUNDWA 79254 NNW No DRILLED BORE Used	
52418 WSW No DRILLED BORE Used -37.607079 144.8463596 TRANSLATION 309900.2 5835598.2 55 3736 13/09/1974 13/09/1974 MISCELLANEOUS WRK966931 N No DRILLED BORE Used -37.55108 144.892378 TRANSLATION 313823.2 5841904.2 55 4427 15/09/2004 20/09/2004 DOMESTIC AND S 79259 NNW No DRILLED BORE Used -37.557664 144.8657034 TRANSLATION 311473.2 5841564.2 55 4336 24/02/1983 24/02/1983 STOCK,DOMESTIC 310872 ENE No DRILLED BORE Used -37.657854 144.9245908 TRANSLATION 316710.2 5841564.2 55 4433 31/12/1965 NOK OROUNDWA 79254 NNW No DRILLED BORE Used -37.61949 144.910537 NOT KNOWN 316642 55 4476 1/12/1975 NTCK,DOMESTIC 109453 S No DRILLED BORE Use	
WRK966931 N No DRILLED BORE Used -37.55108 144.892378 TRANSLATION 313823.2 5841904.2 55 4427 15/09/2004 20/09/2004 DOMESTIC AND S 79259 NNW No DRILLED BORE Used -37.553664 144.8657034 TRANSLATION 311473.2 5841564.2 55 4336 24/02/1983 24/02/1983 STOCK,DOMESTIC 310872 ENE No DRILLED BORE Used -37.567854 144.9245908 TRANSLATION 318710.2 5841106.2 55 4433 31/12/1965 NON GROUNDWA 79254 NNW No DRILLED BORE Used -37.657877 144.8725533 TRANSLATION 315071.2 5841897.2 55 4476 1/12/1975 1/12/1975 STOCK,DOMESTIC AND 109453 S No DRILLED BORE Used -37.65787 144.87204 TRANSLATION 313563.2 5833594.2 55 3996 17/01/1989 STOCK,DOMESTIC 109453 S No	AL. BORE NTWRK
79259 NNW No DRILLED BORE Used -37.553664 144.8657034 TRANSLATION 311473.2 5841564.2 55 4336 24/02/1983 24/02/1983 STOCK,DOMESTIC 310872 ENE No DRILLED BORE Used -37.567854 144.9245908 TRANSLATION 316710.2 584106.2 55 4433 31/12/1965 31/12/1965 NON GROUNDWA 79254 NNW No DRILLED BORE Used -37.567877 144.8725553 TRANSLATION 312071.2 5841897.2 55 4476 1/12/1975 1/12/1975 STOCK,DOMESTIC WRK973515 ESE No DRILLED BORE Used -37.567874 144.9110537 NOT KNOWN 315642 5834350 55 4100 27/04/2006 DOMESTIC AND S 109453 S No DRILLED BORE Used -37.551631 144.8676314 TRANSLATION 313563.2 5833594.2 55 4510 1/04/2006 25/04/2003 DOMESTIC AND S WRK960845 NNW	
310872 ENE No DRILLED BORE Used -37.567854 144.9245908 TRANSLATION 316710.2 5840106.2 55 4433 31/12/1965 31/12/1965 NON GROUNDWA 79254 NNW No DRILLED BORE Used -37.550787 144.972553 TRANSLATION 312071.2 5841897.2 55 4476 1/12/1975 1/12/1975 STOCK,DOMESTIC WRK973515 ESE No DRILLED BORE Used -37.61949 144.9110537 NOT KNOWN 315642 5834350 55 4100 27/04/2006 27/04/2006 DOMESTIC AND S 109453 S No DRILLED BORE Used -37.551631 144.8673204 TRANSLATION 31563.2 5833594.2 55 3996 17/01/1989 17/01/1989 STOCK,DOMESTIC WRK960845 NNW No DRILLED BORE Used -37.551631 144.8603561 TRANSLATION 311529.2 5841791.2 55 4529 25/04/2003 DOMESTIC AND S WRK991291 NNW	TOCK
79254 NNW No DRILLED BORE Used -37.550787 144.8725553 TRANSLATION 312071.2 5841897.2 55 4476 1/12/1975 1/12/1975 STOCK,DOMESTIC WRK973515 ESE No DRILLED BORE Used -37.61949 144.9110537 NOT KNOWN 315642 5834350 55 4100 27/04/2006 27/04/2006 DOMESTIC AND S 109453 S No DRILLED BORE Used -37.625879 144.8873204 TRANSLATION 313563.2 5833594.2 55 3996 17/01/1989 17/01/1989 STOCK,DOMESTIC AND S WRK960845 NNW No DRILLED BORE Used -37.551631 144.867561 GLOBAL POSIT 55 4529 25/04/2003 25/04/2003 DOMESTIC AND S WRK991291 NNW No DRILLED BORE Used -37.551631 144.9031388 NOT KNOWN 311036 5841558 55 4511 4/06/2009 DOMESTIC AND S WRK991291 NNW No DRILLED BORE <td></td>	
WRK973515 ESE No DRILLED BORE Used -37.61949 144.9110537 NOT KNOWN 315642 5834350 55 4100 27/04/2006 27/04/2006 DOMESTIC AND S 109453 S No DRILLED BORE Used -37.625879 144.8873204 TRANSLATION 313563.2 5833594.2 55 3996 17/01/1989 17/01/1989 STOCK,DOMESTIC WRK960845 NNW No DRILLED BORE Used -37.551631 144.8603954 TRANSLATION 311529.2 5841791.2 55 4529 25/04/2003 25/04/2003 DOMESTIC AND S WRK991291 NNW No DRILLED BORE Used -37.551631 144.8607561 GLOBAL POSIT 51103 55 4511 4/06/2009 DOMESTIC AND S WRK991291 NNW No DRILLED BORE Used -37.551631 144.9031388 NOT KNOWN 314953 5833905 55 4103 27/04/2006 26/04/2006 DOMESTIC AND S WRK973516 ESE No	ER
109453 S No DRILLED BORE Used -37.625879 144.8873204 TRANSLATION 313563.2 5833594.2 55 3996 17/01/1989 17/01/1989 STOCK,DOMESTIC WRK960845 NNW No DRILLED BORE Used -37.551631 144.8663954 TRANSLATION 313563.2 5833594.2 55 3996 17/01/1989 17/01/1989 STOCK,DOMESTIC WRK901291 NNW No DRILLED BORE Used -37.553631 144.8607561 GLOBAL POSIT 55 4511 4/06/2009 4/06/2009 DOMESTIC AND S WRK973516 ESE No DRILLED BORE Used -37.561428 144.9031388 NOT KNOWN 314953 5833905 55 4103 27/04/2006 28/04/2006 DOMESTIC AND S WRK964250 NNE No DRILLED BORE Used -37.54236 144.9037888 TRANSLATION 314832.2 5841888.2 55 4636 10/02/2004 10/02/2004 DOMESTIC AND S 79258 N No	
WRK960845 NNW No DRILLED BORE Used -37.551631 144.8663954 TRANSLATION 311529.2 5841791.2 55 4529 25/04/2003 25/04/2003 DOMESTIC AND S WRK991291 NNW No DRILLED BORE Used -37.553631 144.8607561 GLOBAL POSIT 311036 5841558 55 4511 4/06/2009 4/06/2009 DOMESTIC AND S WRK973516 ESE No DRILLED BORE Used -37.551428 144.9031388 NOT KNOWN 314953 5833905 55 4103 27/04/2006 28/04/2006 DOMESTIC AND S WRK964250 NNE No DRILLED BORE Used -37.54825 144.9037888 TRANSLATION 314832.2 584188.2 55 4686 10/02/2004 DOMESTIC AND S Y9258 N No DRILLED BORE Used -37.548525 144.8005651 TRANSLATION 312773.2 5842164.2 55 4638 21/10/1982 23/10/1982 STOCK WRK973514 SE	OCK
WRK991291 NNW No DRILLED BORE Used -37.553631 144.8607561 GLOBAL POSIT 311036 5841558 55 4511 4/06/2009 4/06/2009 DOMESTIC AND S WRK973516 ESE No DRILLED BORE Used -37.62336 144.9031388 NOT KNOWN 314953 5833905 55 4103 27/04/2006 28/04/2006 DOMESTIC AND S WRK964250 NNE No DRILLED BORE Used -37.51428 144.9037888 TRANSLATION 314332.2 5841888.2 55 4686 10/02/2004 10/02/2004 DOMESTIC AND S 79258 N No DRILLED BORE Used -37.548525 144.8005651 TRANSLATION 312773.2 5842164.2 55 4638 21/10/1982 23/10/1982 STOCK WRK973514 SE No DRILLED BORE Used -37.618278 144.9153701 NOT KNOWN 316020 5834493 55 4240 26/04/2006 26/04/2006 DOMESTIC AND S	
WRK973516 ESE No DRILLED BORE Used -37.62336 144.9031388 NOT KNOWN 314953 5833905 55 4103 27/04/2006 28/04/2006 DOMESTIC AND S WRK964250 NNE No DRILLED BORE Used -37.551428 144.9037888 TRANSLATION 314832.2 5841888.2 55 4686 10/02/2004 10/02/2004 DOMESTIC AND S 79258 N No DRILLED BORE Used -37.548255 144.8805651 TRANSLATION 312773.2 5842164.2 55 4638 21/10/1982 23/10/1982 STOCK WRK973514 SE No DRILLED BORE Used -37.618278 144.9153701 NOT KNOWN 316020 5834493 55 4240 26/04/2006 DOMESTIC AND S	OCK
WRK964250 NNE No DRILLED BORE Used -37.551428 144.9037888 TRANSLATION 314832.2 5841888.2 55 4686 10/02/2004 10/02/2004 DOMESTIC AND S 79258 N No DRILLED BORE Used -37.548525 144.8805651 TRANSLATION 312773.2 5842164.2 55 4638 21/10/1982 23/10/1982 STOCK WRK973514 SE No DRILLED BORE Used -37.618278 144.9153701 NOT KNOWN 316020 5834493 55 4240 26/04/2006 26/04/2006 DOMESTIC AND S	OCK
79258 N No DRILLED BORE Used -37.548525 144.8805651 TRANSLATION 312773.2 5842164.2 55 4638 21/10/1982 23/10/1982 STOCK WRK973514 SE No DRILLED BORE Used -37.618278 144.9153701 NOT KNOWN 316020 5834493 55 4240 26/04/2006 26/04/2006 DOMESTIC AND S	OCK
WRK973514 SE No DRILLED BORE Used -37.618278 144.9153701 NOT KNOWN 316020 5834493 55 4240 26/04/2006 26/04/2006 DOMESTIC AND S	OCK
79263 N NO DRILLED BORE Used -37 54862 144 8758082 TRANSLATION 312353 2 5842144 2 55 4665 6/08/1982 6/08/1982 STOCK DOMESTIC	OCK
	,
WRK043281 E No DRILLED BORE Used -37.626758 144.8916693 TRANSLATION 313949.2 5833505.2 55 4147 1/11/2004 1/11/2004 IRRIGATION	
WRK960778 WSW No DRILLED BORE Used -37.605321 144.8394547 TRANSLATION 309286.2 5835779.2 55 4191 18/01/2003 19/01/2003 DOMESTIC AND S	OCK
134012 SSE No DRILLED BORE Used -37.599219 144.9339472 TRANSLATION 317613.2 5836644.2 55 4610 11/03/1998 11/03/1998 GROUNDWATER I	VESTIGATION
WRK973513 SE No DRILLED BORE Used -37.616719 144.9205005 NOT KNOWN 316469 5834676 55 4440 26/04/2006 26/04/2006 DOMESTIC AND S	OCK
52415 SW No DRILLED BORE Used -37.612575 144.8443428 TRANSLATION 309736.2 5834984.2 55 4221 7/08/1971 7/08/1971 STOCK,DOMESTIC	,
WRK032833 E No DRILLED BORE Used -37.628189 144.8905414 TRANSLATION 313853.2 5833344.2 55 4287 10/03/1999 10/03/1999 DOMESTIC,IRRIG/	TION
WRK056556 ESE No DRILLED BORE Used -37.623036 144.9112717 NOT KNOWN 315670 5833957 55 4431 10/06/2010 10/06/2010 OBSERVATION	
79253 NW No DRILLED BORE Not Used -37.554538 144.8532616 TRANSLATION 310376.2 5841442.2 55 4751 8/10/1974 8/10/1974 STOCK,DOMESTIC	
79265 NNW No DRILLED BORE Used -37.553548 144.8548066 TRANSLATION 310510.2 5841555.2 55 4771 10/05/1976 10/05/1976 STOCK,DOMESTIC	
134010 SSE No DRILLED BORE Used -37.599061 144.9353112 TRANSLATION 317733.2 5836664.2 55 4724 10/03/1998 10/03/1998 GROUNDWATER I	
134011 SSE No DRILLED BORE Used -37.599245 144.9355322 TRANSLATION 317753.2 5836644.2 55 4747 11/03/1998 11/03/1998 GROUNDWATER I	
109432 S No DRILLED BORE Used -37.631457 144.8758196 TRANSLATION 312562.2 55 4641 3/04/1975 3/04/1975 STOCK,DOMESTIC	

Table 1 Visualising Victoria's Groundwater Search

Site Details

					Elevation	Elevation				1			
				Max	top of	ground							
		Bore	Total depth	diameter	casing	level		Survey		Screen	Screen	Artesian	
Bore ID	Direction	Onsite	(m)	(mm)	(mAHD)	(mAHD)	Date surveyed	desc	Surveyor name	top (m)	bottom (m)	y/n	Screened Lithology
109452	ESE	Yes	121	-	226.53	226.53	9/11/2011	DSELI	DSE-C/O SKM TATURA	78	121	N	78.000-121.000 m: MUDSTONE
109442	SSE	Yes	39.6	-	227.02	227.02	9/11/2011	DSELI	DSE-C/O SKM TATURA	30	39	N	30.000-39.600 m: BASALT
109450	SSE	Yes	120	-	226.93	226.93	9/11/2011	DSELI	DSE-C/O SKM TATURA	96	120	N	90.000-120.000 m: SILTSTONE
334693	SW	Yes	40.99	-	231.08	231.08	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
WRK066555	WNW	Yes	10	-	-	-	-	-	-	-	-	N	-
WRK066554	WNW	Yes	10	-	-	-	-	-	-	-	-	N	-
109445	NE	Yes	115	-	225.58	225.58	9/11/2011	DSELI	DSE-C/O SKM TATURA	103	115	N	70.000-115.000 m: MUDSTONE
109429	NNE	Yes	62.5	-	225.76	225.76	9/11/2011	DSELI	DSE-C/O SKM TATURA	30.48	62.48	N	22.860-48.770 m: CLAY
109441	WSW	No	94.5	-	235.73	235.73	9/11/2011	DSELI	DSE-C/O SKM TATURA	80	93	N	79.000-94.000 m: SHALE
109440	SE	No	82	-	222.35	222.35	9/11/2011	DSELI	DSE-C/O SKM TATURA	31	55	N	55.000-72.000 m: CLAY
WRK032473	NNW	Yes	166	-	234.05	234.05	9/11/2011	DSELI	DSE-C/O SKM TATURA	41	71	N	-
109428	W	No	41.8	-	242.21	242.21	9/11/2011	DSELI	DSE-C/O SKM TATURA	40.8	41.8	N	40.800-41.800 m: BASALT
79261	NNW	Yes	60	-	239.36	239.36	9/11/2011	DSELI	DSE-C/O SKM TATURA	24	60	N	24.380-60.000 m: BASALT
WRK988836	W	No	47	172	243.44	243.44	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109438	WSW	No	45	-	242.49	242.49	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109436	NW	Yes	32.91	-	241.63	241.63	9/11/2011	DSELI	DSE-C/O SKM TATURA	18	32.91	N	21.940-27.430 m: BASALT
109425	WSW	No	-	-	242.87	242.87	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109443	WSW	No	48	-	245.91	245.91	9/11/2011	DSELI	DSE-C/O SKM TATURA	42	48	N	42.000-45.000 m: BASALT
143984	W	No	93	-	254.65	254.65	9/11/2011	DSELI	DSE-C/O SKM TATURA	78	93	N	-
109446	SW	No	150	-	238.95	238.95	9/11/2011	DSELI	DSE-C/O SKM TATURA	135	150	N	40.000-150.000 m: BASALT
334697	NE	No	24.99	-	233.15	233.15	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109437	SW	No	66	-	244.45	244.45	9/11/2011	DSELI	DSE-C/O SKM TATURA	62	66	N	62.000-66.000 m: BASALT
109424	W	No	-	-	267.55	267.55	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	
139974	WSW	No	85	-	248.78	248.78	9/11/2011	DSELI		73	85	N	-
143839	WNW	No	63	-	265.63	265.63	9/11/2011	DSELI	DSE-C/O SKM TATURA	40	63	N	-
142048	SSW	No	58	-	205.03	205.03	9/11/2011	DSELI	DSE-C/O SKM TATURA	40	03	N	-
142048	SW	No	00	-	230.09	230.09	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
112643	WSW	No	- 27.43	-	230.08	240.25	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
WRK967607	ENE	No	30	200	220.07	240.25	9/11/2011	DSELI		-	-	N	-
		-	30	200					DSE-C/O SKM TATURA	-	-		-
79250	W	No	-	-	248.36	248.36	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109434		No	54.25	-	265.75	265.75	9/11/2011	DSELI	DSE-C/O SKM TATURA	44.19	54.25	N	45.720-54.250 m: GRAVEL
109419	W	No	64.01	-	293.33	293.33	9/11/2011	DSELI	DSE-C/O SKM TATURA	43.59	44.5	N	43.590-44.500 m: BASALT
109422	WNW	No	-	-	256.57	256.57	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	
109430	SW	No	99.06	-	225.6	225.6	9/11/2011	DSELI	DSE-C/O SKM TATURA	76.2	99.06	N	76.200-99.060 m: HORNFELS
WRK957997	SSE	No	26.92	50	211.43	211.43	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109449	ESE	No	77	-	213.68	213.68	9/11/2011	DSELI	DSE-C/O SKM TATURA	70	77	N	24.000-77.000 m: MUDSTONE
79252	NW	No	32.61	-	260.78	260.78	9/11/2011	DSELI	DSE-C/O SKM TATURA	27.43	32.61	N	27.430-32.610 m: BASALT
140205	SSW	No	33.6	-	203.01	203.01	9/11/2011	DSELI	DSE-C/O SKM TATURA	22	33.6	N	-
79255	NNE	No	45	-	248.75	248.75	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	23.000-32.000 m: BASALT
79260	NNE	No	38	-	250.05	250.05	9/11/2011	DSELI		15	38	Ν	15.200-38.000 m: BASALT
79256	NNE	No	97	-	251.57	251.57	9/11/2011	DSELI	DSE-C/O SKM TATURA	61	97	Ν	27.000-60.800 m: CLAY
WRK043244	ESE	Yes	55	230	227.05	227.05	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
319781	NNE	No	48.76	-	255.48	255.48	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
319779	NNE	No	48.31	-	254.91	254.91	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
79248	NNE	No	-	-	250.25	250.25	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
112781	S	No	58	-	197.39	197.39	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
WRK042945	SW	No	150	-	230.61	230.61	9/11/2011	DSELI	DSE-C/O SKM TATURA	36	42	Ν	-
WRK979358	NNE	No	68	188	253.57	253.57	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
WRK054905	NW	No	100	180	261.5	261.5	9/11/2011	DSELI		88	94	Ν	-
79257	Ν	No	84	-	266.87	266.87	9/11/2011	DSELI	DSE-C/O SKM TATURA	78	84	Ν	51.000-81.000 m: BASALT
302669	W	No	59.43	-	240.32	240.32	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
79268	N	No	96	-	271.05	271.05	9/11/2011	DSELI	DSE-C/O SKM TATURA	87	93	N	80.000-96.000 m: SILTSTONE

					Elevation	Elevation							
				Max	top of	ground							
		Bore	Total depth	diameter	casing	level		Survey		Screen	Screen	Artesian	
Bore ID	Direction	Onsite	(m)	(mm)	(mAHD)	(mAHD)	Date surveyed	desc	Surveyor name	top (m)	bottom (m)	y/n	Screened Lithology
WRK977450	NNE	No	80	188	251.99	251.99	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
302671	W	No	46.93	-	237.62	237.62	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
334694	E	No	9.44	-	196.98	196.98	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
120765	NNW	No	118	-	274.21	274.21	9/11/2011	DSELI	DSE-C/O SKM TATURA	82	94	N	-
WRK967423	NNE	No	93	165	249.39	249.39	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	75.000-82.000 m: BASALT
302670	W	No	47.24	-	235.35	235.35	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
334692	SSE	No	9.75	-	206.58	206.58	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
302688	W	No	35.35	-	234.77	234.77	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
109420	SSE	No	21.34	-	187.78	187.78	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
116348	N	No	106	-	269.62	269.62	9/11/2011	DSELI	DSE-C/O SKM TATURA	100	106	Ν	90.000-106.000 m: SANDSTONE
79264	NNE	No	24	-	256.07	256.07	9/11/2011	DSELI	DSE-C/O SKM TATURA	18	24	Ν	18.000-24.000 m: BASALT
WRK985085	NNW	No	90	200	274.39	274.39	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	70.000-90.000 m: BASALT
52428	E	No	36	-	184.53	184.53	9/11/2011	DSELI	DSE-C/O SKM TATURA	30	36	N	30.000-36.000 m: BASALT
79266	NNW	No	93	-	275.87	275.87	9/11/2011	DSELI	DSE-C/O SKM TATURA	66	93	N	66.000-93.000 m: SANDSTONE
319782	ENE	No	44.8	-	248.85	248.85	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
334695	SSE	No	47.24	-	205.16	205.16	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
WRK962170	N	No	81	205	259.67	259.67	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
WRK957993	NE	No	24.5	50	239.88	239.88	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
52418	WSW	No	91.44	-	196.32	196.32	9/11/2011	DSELI	DSE-C/O SKM TATURA	35.36	42.36	N	35.350-42.360 m: GRANITE
WRK966931	N	No	90.5	188	258.49	258.49	9/11/2011	DSELI	DSE-C/O SKM TATURA	70	90.5	N	-
79259	NNW	No	119	-	273.26	273.26	9/11/2011	DSELI	DSE-C/O SKM TATURA	114	119	N	71.000-119.000 m: MUDSTONE
310872	ENE	No	25.29	-	254.51	254.51	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
79254	NNW	No	57	-	267.69	267.69	9/11/2011	DSELI	DSE-C/O SKM TATURA	47	55	N	48.000-52.000 m: SAND
WRK973515	ESE	No	9	130	197.41	197.41	9/11/2011	DSELI	DSE-C/O SKM TATURA	4	9	N	-
109453	S	No	54	-	170.27	170.27	9/11/2011	DSELI	DSE-C/O SKM TATURA	50	54	N	50.000-54.000 m: BASALT
WRK960845	NNW	No	87	165	263.36	263.36	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
WRK991291	NNW	No	76	188	230.75	230.75	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	Ν	-
WRK973516	ESE	No	27	130	166.24	166.24	9/11/2011	DSELI	DSE-C/O SKM TATURA	24	27	N	-
WRK964250	NNE	No	80	188	249.34	249.34	9/11/2011	DSELI	DSE-C/O SKM TATURA	66	80	Ν	-
79258	N	No	58	-	268.34	268.34	9/11/2011	DSELI	DSE-C/O SKM TATURA	56	58	N	48.000-58.000 m: SANDSTONE
WRK973514	SE	No	17	130	198.41	198.41	9/11/2011	DSELI	DSE-C/O SKM TATURA	11	17	N	-
79263	N	No	74.67	-	266.62	266.62	9/11/2011	DSELI	DSE-C/O SKM TATURA	27	74.67	N	27.000-74.670 m: BASALT
WRK043281	E	No	33	215	164.8	164.8	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
WRK960778	WSW	No	63	165	173.61	173.61	9/11/2011	DSELI	DSE-C/O SKM TATURA	57	63	N	-
134012	SSE	No	67	-	199.96	199.96	9/11/2011	DSELI	DSE-C/O SKM TATURA	31.6	37.6	N	-
WRK973513	SE	No	18	130	196.98	196.98	9/11/2011	DSELI	DSE-C/O SKM TATURA	12	18	Ν	-
52415	SW	No	91.4	-	188.16	188.16	9/11/2011	DSELI	DSE-C/O SKM TATURA	48.76	51.81	N	48.760-51.810 m: COAL
WRK032833	E	No	31	-	156.91	156.91	9/11/2011	DSELI	DSE-C/O SKM TATURA	23	31	Ν	-
WRK056556	ESE	No	28	150	169	169	9/11/2011	DSELI	DSE-C/O SKM TATURA	22	28	N	-
79253	NW	No	38.1	-	182.08	182.08	9/11/2011	DSELI	DSE-C/O SKM TATURA	-	-	N	-
79265	NNW	No	42.67	-	192.42	192.42	9/11/2011	DSELI	DSE-C/O SKM TATURA	32	42.67	N	33.520-42.670 m: CLAY
134010	SSE	No	36.3	-	199.92	199.92	9/11/2011	DSELI	DSE-C/O SKM TATURA	30.3	36.3	N	-
134011	SSE	No	34.8	-	199.43	199.43	9/11/2011	DSELI	DSE-C/O SKM TATURA	28.8	34.8	N	-
109432	S	No	39.5	-	178.52	178.52	9/11/2011	DSELI	DSE-C/O SKM TATURA	20	39.5	N	-

Bore ID	Start date	Component	Material	Interval from (m)	Interval to (m)	Construction method	Out.Diam. (mm)	Ins.Diam (mm)
109452	3/07/1989	Hole	-	0	121	D.H. HAMMER	-	-
109452	3/07/1989	Casing	MILD STEEL	0	78	-	-	127
109452	3/07/1989	Screen	MILD STEEL	78	121			121
109442	29/04/1981	Hole		0	39.6	D.H. HAMMER	177	_
109442	29/04/1981	Casing	- PVC	0	39.0	D.H. HAIVIIVIER	1//	152
109442	29/04/1981	Screen	PVC	30	39	-	- 152	152
			PVC			-	152	-
109442	29/04/1981	Casing	PVC	39	39.6		-	152
109450	22/04/1989	Hole	-	0	120	D.H. HAMMER	-	-
109450	22/04/1989	Casing	PVC	0	96	-	-	100
109450	22/04/1989	Screen	PVC	96	120	-	-	-
109445	1/03/1983	Hole	-	0	115	D.H. HAMMER	165	-
109445	1/03/1983	Casing	STEEL	0	70	-	-	125
109445	1/03/1983	Casing	PVC	70	103	-	-	100
109445	1/03/1983	Screen	PVC	103	115	-	-	100
109429	30/10/1971	Hole	-	0	62.5	CABLE TOOL	-	-
09429	30/10/1971	Casing	NOT KNOWN	0	48.77	-	-	-
09429	30/10/1971	Screen	NOT KNOWN	30.48	62.48	-	-	-
09441	10/10/1980	Hole	-	0	68	D.H. HAMMER	203	-
09441		Hole	-	68	94.5	D.H. HAMMER	152	-
09441	10/10/1980	Casing	PVC	0	42	-	-	165
09441		Casing	PVC	42	94.5	-	-	140
109441	10/10/1980	Screen	PVC	80	94.5	l	140	-
109441	4/08/1980	Hole		0	93 82	- ROTARY	160	1
				-	-		100	-
09440	4/08/1980	Casing	PVC	0	31	-	-	125
109440	4/08/1980	Screen	PVC	31	55	- -	125	-
09440	4/08/1980	Casing	PVC	55	66	-	-	125
09440	4/08/1980	Screen	PVC	66	82	-	125	-
	31/01/1995	Hole	-	0	41	DIAMOND CORE	200	-
NRK03247	31/01/1995	Hole	-	41	78	D.H. HAMMER	175	-
NRK03247	31/01/1995	Hole	-	78	166	D.H. HAMMER	150	-
NRK03247	31/01/1995	Casing	STEEL	-0.3	71	-	-	150
NRK03247	31/01/1995	Screen	STEEL	41	71	-	165	150
	31/01/1995	Screen	SLOTTED STEEL	71	166	-	-	-
09428	4/11/1971	Hole	-	0	41.8	CABLE TOOL	-	-
109428	4/11/1971	Casing	NOT KNOWN	0	3.05	-	-	-
109428	4/11/1971	Screen	NOT KNOWN	40.8	41.8	-	-	-
79261	5/08/1982	Hole		40.0	60	D.H. HAMMER	178	-
				0	24		170	-
79261	5/08/1982	Casing	MILD STEEL	24		-	-	152
79261	5/08/1982	Screen	MILD STEEL		60	-	-	152
	26/01/2009	Hole	-	0	47	ROTARY	172	-
	26/01/2009	Outer Lining	CEMENT	0	1	-	-	-
	26/01/2009	Outer Lining	SEAL	35	36	-	-	-
	26/01/2009	Casing	PVC	0	36	-	135	125
NRK98883	26/01/2009	Slotted Casing	PVC	36	47	-	135	125
09438	1/11/1978	Hole	-	0	45	D.H. HAMMER	165	-
109436	7/02/1977	Hole	-	0	32.91	D.H. HAMMER	-	-
109436	7/02/1977	Casing	NOT KNOWN	0	32.91	-	-	127
09436	7/02/1977	Screen	NOT KNOWN	18	32.91	-	-	-
09425	31/12/1962	Hole	-	0	9999.99	CABLE TOOL	-	-
09443	9/04/1981	Hole	-	0	48	D.H. HAMMER	-	-
109443	9/04/1981	Casing	PVC	0	42	-	-	125
109443	9/04/1981	Screen	PVC	42	48	-	-	-
143984		Hole	-	0	93	ROTARY AIR	165	-
143984	11/12/1999		PVC	-0.3	78	-	-	125
143984	11/12/1999		PVC	-0.3 78	93	1_	1_	125
143984	31/05/1985			0	135	- D.H. HAMMER	- 152	120
			-	135	135	D.H. HAMMER	1152	
09446	31/05/1985						114	-
09446	31/05/1985		PVC	0	135	-	-	127
109446	31/05/1985		PVC	135	150	-	-	-
109437	26/06/1978		-	0	66	D.H. HAMMER	152	-
09437	26/06/1978		PVC	0	62	-	-	100
09437	26/06/1978		STEEL	0	57	-	-	127
	26/06/1978		STEEL	62	66	-	100	-
09424	31/12/1962		-	0	9999.99	CABLE TOOL	-	-
	20/02/1999			0	85	D.H. HAMMER	165	-
39974	20/02/1999	Outer Lining	CEMENT	0	0.7	-	-	-
39974		Casing	PVC	0	85	-	-	125
		Screen	PVC	73	85	-	-	-
43839	9/09/1999	Hole	-	0	63	ROTARY AIR	165	-
43839	9/09/1999	Casing	PVC	-0.3	40	-	-	125
43839	9/09/1999	Screen	PVC	40	63	1.	l.	125
42048	1/11/1999	Hole	-	40 0	5	- ROTARY MUD	200	120
			-					+
42048	1/11/1999	Hole	-	5	58	D.H. HAMMER	171	
09426	31/12/1962	Hole	-	0	9999.99	CABLE TOOL	-	-
12643	19/01/1992	Hole	-	0	27.4	D.H. HAMMER	162	-
		Hole	-	0	0.7	MECH. AUGER	200	-
	22/11/2005	Hole		0.7	30	D.H. HAMMER	200	

		-		Interval	Interval to	Construction	Out.Diam.	Ins.Diam
Bore ID	Start date	Component	Material	from (m)	(m)	method	(mm)	(mm)
79250	31/12/1970	Hole	-	0	0	NOT KNOWN	-	-
109434	31/05/1976	Hole	-	0	54.25	CABLE TOOL	-	-
109434	31/05/1976	Casing	PVC	0	54.25	-	-	140
109434	31/05/1976	Screen	PVC	44.19	54.25	-	-	-
109419	21/05/1962	Hole	-	0	64.01	CABLE TOOL	-	-
109419	21/05/1962	Casing	NOT KNOWN	0	43.59	-	-	-
109419	21/05/1962	Screen	NOT KNOWN	43.59	44.5	-	-	-
109422	31/12/1970	Hole	-	0	9999.99	NOT KNOWN	-	-
109430	30/07/1973	Hole	-	0	99.06	D.H. HAMMER	-	-
109430	30/07/1973	Casing	GALVANISED IRO	0	76.2	-	-	152
109430	30/07/1973	Screen	GALVANISED IRO	76.2	99.06	-	-	-
109449	10/02/1988	Hole	-	0	77	D.H. HAMMER	-	-
109449	10/02/1988	Casing	PVC	0	70	-	-	125
109449	10/02/1988	Screen	PVC	70	77	-	-	-
79252	9/02/1974	Hole	-	0	32.61	CABLE TOOL	-	-
79252	9/02/1974	Casing	NOT KNOWN	0	27.43	-	-	152
79252	9/02/1974	Screen	NOT KNOWN	27.43	32.61	-	-	-
140205	24/01/2000	Hole	-	0	33.6	D.H. HAMMER	200	-
140205	24/01/2000		CEMENT	0	0.8	-	-	-
140205	24/01/2000	Outer Lining	GRAVEL	0.8	33.6	-	-	-
140205	24/01/2000	Casing	NOT KNOWN	0.0	33.6	1-	1-	125
140205	24/01/2000	Screen	NOT KNOWN	22	33.6	1-	-	-
79255	1/02/1980	Hole	-	0	45	CABLE TOOL	177	-
79260	1/02/1980	Hole	-	0	24	D.H. HAMMER	178	1.
79260	1/06/1982	Hole	_	24	38	D.H. HAMMER	165	+
79260	1/06/1982	Casing	- MILD STEEL	0	15		-	- 127
79260	1/06/1982		MILD STEEL	15	38			12/
		Screen	IVILD STEEL				-	
79256	2/07/1982	Hole		0	97	D.H. HAMMER	152	150
79256	2/07/1982	Casing	STEEL	0	61	-	-	152
79256	2/07/1982	Screen	STEEL	61	97	-	-	-
	11/05/2003	Hole	-	0	55	ROTARY AIR	230	-
	11/05/2003	Outer Lining	CEMENT	-0.15	18	-	-	-
	11/05/2003	Outer Lining	BENTONITE	18	19	-	-	-
WRK04324	11/05/2003	Outer Lining	GRAVEL	19	55	-	-	-
	11/05/2003	Casing	PVC	-3	35	-	-	150
WRK04324	11/05/2003	Slotted Casing	PVC	35	52	-	-	150
79248	30/05/1962	Hole	-	0	0	NOT KNOWN	-	-
112781	29/03/1992	Hole	-	0	58	ROTARY	160	-
WRK04294	19/12/1994	Hole	-	0	70	D.H. HAMMER	200	-
	19/12/1994	Hole	-	70	150	D.H. HAMMER	139	-
	19/12/1994	Outer Lining	CEMENT	0	2	-	-	-
	19/12/1994	Outer Lining	GRAVEL	2	0	-	-	-
	19/12/1994	Outer Lining	GRAVEL	35	75		-	-
	19/12/1994	Outer Lining	SEAL	75	0	-	139	-
		v		-		-	139	-
	19/12/1994	Casing	PVC CLASS 9	0	75	-	-	100
	19/12/1994	Casing	PVC CLASS 9	0	54	-		150
	19/12/1994	Screen	PVC CLASS 9	36	42	-	-	-
	19/12/1994	Screen	SCREENED PVC	53	59	-	-	-
	19/12/1994	Screen	SCREENED PVC	71.5	75	-	-	-
	19/12/1994	Screen	SCREENED PVC	75	150	-	-	-
WRK97935	17/02/2007	Hole	-	0	1	NOT KNOWN	188	-
WRK97935	17/02/2007	Hole	-	1	68	D.H. HAMMER	165	-
WRK97935	17/02/2007	Outer Lining	CEMENT	0	0.5	-	-	-
	17/02/2007		-	0.5	57	-	-	-
		Slotted Casing	-	57	68	-	-	-
	16/02/2010	Hole	-	0	100	D.H. HAMMER	180	-
	16/02/2010		CEMENT	0	9	-	-	-
	16/02/2010		BENTONITE	9	10	-	1-	-
	16/02/2010	Outer Lining	GRAVEL	10	100	t <u>.</u>	1-	1.
	16/02/2010	Ŭ.	PVC	0.5	88	t	129	- 125
			PVC	0.5 88	94	<u> </u>	129	120
	16/02/2010	Screen			-	-		-
	16/02/2010	Casing	PVC	94	100		129	125
79257	14/09/1980		-	0	84	D.H. HAMMER	165	-
79257	14/09/1980	Casing	PVC CLASS 9	0	78	-	-	129
79257	14/09/1980	Screen	PVC CLASS 9	78	84	-	127	-
79268	5/04/1990	Hole	-	0	96	D.H. HAMMER	-	-
79268	5/04/1990	Casing	PVC	0	87	-	-	100
79268	5/04/1990	Screen	PVC	87	93	-	-	-
WRK97745	16/02/2007	Hole	-	0	2.3	ROTARY AIR	188	-
	16/02/2007	Hole	-	2.3	80	D.H. HAMMER	165	-
	16/02/2007	Outer Lining	CEMENT	0	0.5	-	-	-
	16/02/2007	Casing	PVC	0.5	66	-	140	125
						1	1	

Bore ID	Start date	Component	Material	Interval from (m)	Interval to (m)	Construction method	Out.Diam. (mm)	Ins.Dian (mm)
120765	19/12/1993	Hole	-	0	118	D.H. HAMMER	165	-
120765	19/12/1993	Outer Lining	CEMENT	0	0.5	-	-	-
120765	19/12/1993	Outer Lining	GRAVEL	50	112	-	-	-
	19/12/1993	Casing	NOT KNOWN	0	118	-	-	-
120765	19/12/1993	Casing	PVC CLASS 9	0	82	-	-	100
120765	19/12/1993	Screen	PVC CLASS 9	82	94	-	100	-
NRK96742		Hole	-	0	93	ROTARY AIR	165	-
NRK96742		Casing	PVC	1.3	70	-	-	125
NRK96742		Slotted Casing		70	93	-	-	125
109420	30/09/1962	Hole	1 10	0	21.34	CABLE TOOL	-	125
	31/08/1902	Hole	-	0		D.H. HAMMER	165	-
116348				-	106		165	-
16348	31/08/1993	Outer Lining	CEMENT	0	0.5	-	-	-
16348	31/08/1993	Outer Lining	GRAVEL	80	106	-	-	-
	31/08/1993	Casing	PVC CLASS 9	-0.2	100	-	-	100
16348	31/08/1993	Screen	PVC CLASS 9	100	106	-	-	100
79264	4/03/1987	Hole	-	0	24	D.H. HAMMER	-	-
79264	4/03/1987	Casing	PVC	0	18	-	-	125
79264	4/03/1987	Screen	PVC	18	24	-	125	-
	21/02/2008	Hole	-	0	10	D.H. HAMMER	200	-
52428	18/10/1989	Hole	-	0	36	D.H. HAMMER	-	1-
52428	18/10/1989	Outer Lining	SEAL	28	0	-	165	1.
52428	18/10/1989	Casing	PVC	0	30	l_	-	100
			PVC	30	36	+	+	100
52428	18/10/1989	Screen	1 80				+	-
	8/12/1988	Hole	-	0	93	D.H. HAMMER	+	-
	8/12/1988	Casing	PVC	0	66	-	-	100
	8/12/1988	Screen	PVC	66	93	-	-	-
	14/08/2003	Hole	-	0	63	D.H. HAMMER	205	-
NRK96217	14/08/2003	Hole	-	63	81	D.H. HAMMER	137	-
NRK96217	14/08/2003	Outer Lining	CEMENT	0	0.5	-	-	-
	14/08/2003	Casing	PVC	0	63	-	-	145
	14/08/2003	Openhole	-	63	81	-	-	-
52418	13/09/1974	Hole	-	0	35.36	ROTARY AIR	-	
52418	13/09/1974	Hole	_	35.36	91.44	D.H. HAMMER	-	_
52418	13/09/1974		STEEL	0	35.36		-	203
		Casing	-	-		-	-	203
	13/09/1974	Screen	STEEL	35.36	42.36	-	-	-
	20/09/2004	Hole	-	0	7.3	ROTARY AIR	188	-
	20/09/2004	Hole	-	7.3	90.5	D.H. HAMMER	165	-
NRK96693	20/09/2004	Outer Lining	CEMENT	0	0.5	-	-	-
WRK96693	20/09/2004	Casing	PVC	-0.5	70	-	140	125
NRK96693	20/09/2004	Screen	PVC	70	90.5	-	140	125
79259	24/02/1983	Hole	-	0	119	D.H. HAMMER	165	-
79259	24/02/1983	Casing	PVC	0	114	-	-	125
	24/02/1983	Screen	PVC	114	119	-	-	-
79254	1/12/1975	Hole	-	0	57	CABLE TOOL	-	1.
79254	1/12/1975	Casing	GALVANISED IRO	-	47	GABLE TOOL	-	127
	1/12/1975	Screen	GALVANISED IRO		55	-	114	121
			GALVANISED IRO			-	114	-
	1/12/1975	Casing	GALVANISED IRO		57	-	-	127
	27/04/2006	Hole	-	0	4.3	MECH. AUGER	130	-
	27/04/2006	Hole	-	4.3	9	ROTARY AIR	120	-
	27/04/2006	Outer Lining	CEMENT	0	4	-	-	-
NRK97351	27/04/2006	Outer Lining	BENTONITE	4	5	-	-	-
NRK97351	27/04/2006	Outer Lining	GRAVEL	5	9	-	-	-
NRK97351	27/04/2006	Casing	PVC	0	4	-	60	50
	27/04/2006		PVC	4	9	-	60	-
	17/01/1989		-	0	54	D.H. HAMMER	-	-
	17/01/1989	Casing	PVC	0	50	-	-	125
	17/01/1989		PVC	50	54	-	- 125	-
				0		- D.H. HAMMER		
	25/04/2003				87		165	+
	25/04/2003	Outer Lining	CEMENT	0	0.5	-	-	-
	25/04/2003	Casing	PVC	0	69	-	-	125
	25/04/2003	Slotted Casing	PVC	69	87	-	-	-
NRK99129		Hole	-	0	3	ROTARY AIR	188	-
NRK99129		Hole	-	3	76	D.H. HAMMER	165	-
NRK99129	4/06/2009	Outer Lining	CEMENT	0	1	-	-	<u> </u>
NRK99129		Casing	PVC	0.5	63	-	140	125
VRK99129		Slotted Casing	PVC	63	76	-	140	125
	28/04/2006	Hole	-	0	2	MECH. AUGER	130	-
	28/04/2006	Hole	_	2	27	D.H. HAMMER	120	-
	28/04/2006	Outer Lining	- CEMENT	0	27		120	-E
							+	-
	28/04/2006	Outer Lining	BENTONITE	22	23	-	1-	-
	28/04/2006	Outer Lining	GRAVEL	23	27	-	-	-
	28/04/2006	Casing	PVC	0	24	-	60	50
VRK97351	28/04/2006	Screen	NOT KNOWN	24	27	-	60	-
NRK96425	10/02/2004	Hole	-	0	3	ROTARY AIR	188	-
	10/02/2004		-	3	80	D.H. HAMMER	165	-
	10/02/2004		CEMENT	0	0.5	-	-	-
		•	PVC	0.5	66	-	140	125
VRK96425	10/02/2004	Casing						

				Interval	Interval to	Construction	Out.Diam.	Ins.Diam.
Bore ID	Start date	Component	Material	from (m)	(m)	method	(mm)	(mm)
79258	23/10/1982	Hole	-	0	58	D.H. HAMMER	203	-
79258	23/10/1982	Casing	STEEL	0	56	-	-	152
79258	23/10/1982	Screen	STEEL	56	58	-	-	-
WRK97351	26/04/2006	Hole	-	0	2.1	MECH. AUGER	130	-
WRK97351	26/04/2006	Hole	-	2.1	17	D.H. HAMMER	120	-
WRK97351	26/04/2006	Outer Lining	CEMENT	0	9	-	-	-
WRK97351	26/04/2006	Outer Lining	BENTONITE	9	10	-	-	-
WRK97351	26/04/2006	Outer Lining	GRAVEL	10	17	-	-	-
WRK97351	26/04/2006	Casing	PVC	0	11	-	60	50
WRK97351	26/04/2006	Screen	PVC	11	17	-	60	-
79263	6/08/1982	Hole	-	0	58	D.H. HAMMER	178	-
79263	6/08/1982	Hole	-	58	74.67	D.H. HAMMER	140	-
79263	6/08/1982	Casing	MILD STEEL	0	27	-	-	127
79263	6/08/1982	Screen	MILD STEEL	27	74.67	-	-	-
WRK04328	1/11/2004	Hole	-	0	18	ROTARY AIR	215	-
WRK04328	1/11/2004	Hole	-	18	33	ROTARY AIR	165	-
WRK04328	1/11/2004	Outer Lining	CEMENT	0.1	18	-	-	-
WRK04328	1/11/2004	Outer Lining	BENTONITE	18	19	-	-	-
WRK04328	1/11/2004	Casing	PVC	0.3	21	-	-	125
WRK04328	1/11/2004	Slotted Casing	PVC	21	32	-	-	125
WRK04328	1/11/2004	Casing	PVC	32	33	-	-	125
WRK96077	19/01/2003	Hole	-	0	8	ROTARY AIR	165	-
WRK96077		Hole	-	8	63	D.H. HAMMER	165	-
WRK96077	19/01/2003	Outer Lining	CEMENT	0	0.5	-	-	-
WRK96077	19/01/2003	Casing	PVC	-0.5	57	-	140	125
	19/01/2003	Screen	PVC	57	63	-	140	125
134012	11/03/1998	Hole	-	0	67	D.H. HAMMER	137	-
134012	11/03/1998	Outer Lining	CEMENT	0	0.6	-	-	-
134012	11/03/1998		GRAVEL	30	37.6	-	-	-
	11/03/1998	Casing	STEEL	-0.05	0.5	-	-	150
134012	11/03/1998	Casing	PVC CLASS 18	0	37.6	-	-	50
134012	11/03/1998	Screen	PVC CLASS 18	31.6	37.6	-	-	-
	26/04/2006	Hole	-	0	2	MECH. AUGER	130	-
	26/04/2006	Hole	-	2	18	ROTARY AIR	120	-
WRK97351	26/04/2006	Outer Lining	CEMENT	0	10.5	-	-	-
	26/04/2006	Outer Lining	BENTONITE	10.5	11.5	-	-	-
	26/04/2006	Outer Lining	GRAVEL	11.5	18	-	-	-
WRK97351		Casing	PVC	0	12	-	60	50
	26/04/2006	Screen	PVC	12	18	-	60	-
	7/08/1971	Hole	-	0	52.42	CABLE TOOL	-	-
	7/08/1971	Casing	NOT KNOWN	0	48.76	-	-	-
	7/08/1971	Screen	NOT KNOWN	48.76	51.81	-	-	-
WRK03283		Hole	-	0	31	ROTARY AIR	125	-
WRK03283		Casing	PVC	-0.3	23	-	-	125
WRK03283		Screen	PVC	23	31	-	-	125
WRK05655		Hole	-	0	28	D.H. HAMMER	150	-
WRK05655		Outer Lining	CEMENT	0	18.5	-	-	-
	10/06/2010	Outer Lining	BENTONITE	18.5	21.5	-	-	-
WRK05655		Outer Lining	GRAVEL	21.5	28	-	-	1-
WRK05655		Casing	PVC	0	22	-	60	50
	10/06/2010	Screen	PVC	22	28	-	60	-
	8/10/1974	Hole	-	0	38.1	CABLE TOOL	-	-
	10/05/1976		-	0	42.67	CABLE TOOL	-	-
	10/05/1976		PVC	0	42.67	-	-	140
	10/05/1976	Screen	PVC	32	42.67	-	-	-
	10/03/1998		-	0	36.3	D.H. HAMMER	137	-
	10/03/1998		CEMENT	0	0.5	-	-	-
	10/03/1998	Outer Lining	BENTONITE	27.5	28.5	-	1-	-
	10/03/1998	Outer Lining	GRAVEL	28.5	36.3	-	-	-
	10/03/1998	Casing	PVC CLASS 18	0	36.3	-	-	50
	10/03/1998	Screen	PVC CLASS 18	30.3	36.3	-	-	-
			-	0	34.8	D.H. HAMMER	137	1-
134010	11/03/1998			0	0.6	-	-	1-
134010 134011	11/03/1998		ICEMENT		0.0	1	1	_
134010 134011 134011	11/03/1998	Outer Lining			34.8	-	-	-
134010 134011 134011 134011	11/03/1998 11/03/1998	Outer Lining Outer Lining	GRAVEL	26.3	34.8 0.5	-	-	-
134010 134011 134011 134011 134011	11/03/1998 11/03/1998 11/03/1998	Outer Lining Outer Lining Casing	GRAVEL STEEL	26.3 -0.5	0.5	-	-	- 150 50
134010 134011 134011 134011 134011 134011 134011	11/03/1998 11/03/1998 11/03/1998 11/03/1998	Outer Lining Outer Lining Casing Casing	GRAVEL STEEL PVC CLASS 18	26.3 -0.5 0	0.5 34.8	- - -	- - -	- 150 50
134010 134011 134011 134011 134011 134011 134011 134011	11/03/1998 11/03/1998 11/03/1998 11/03/1998 11/03/1998	Outer Lining Outer Lining Casing Casing Screen	GRAVEL STEEL	26.3 -0.5 0 28.8	0.5 34.8 34.8	- - - -	- - -	
134010 134011 134011 134011 134011 134011 134011 134011 109432	11/03/1998 11/03/1998 11/03/1998 11/03/1998	Outer Lining Outer Lining Casing Casing	GRAVEL STEEL PVC CLASS 18	26.3 -0.5 0	0.5 34.8	- - - ROTARY	- - - - -	

			Interval from	Interval to	
Bore ID	Interpretation	Date	(m)	(m)	Rock Type
109452	Interpretation from Screen	3/07/1989	78	121	NOT KNOWN
109442	Interpretation from Screen	29/04/1981	30	39	NOT KNOWN
109450	Interpretation from Screen	22/04/1989	96	120	CLAY
109445	Interpretation from Screen	1/03/1983	103	115	NOT KNOWN
109429	Interpretation from Screen	30/10/1971	30.48	62.48	NOT KNOWN
109441	Interpretation from Screen	10/10/1980	80	93	NOT KNOWN
109440	Interpretation from Screen	4/08/1980	31	55	NOT KNOWN
109440	Interpretation from Screen	4/08/1980	66	82	SANDSTONE
109428	Interpretation from Screen	4/11/1971	40.8	41.8	CLAY
79261	Interpretation from Screen	5/08/1982	24	60	SANDSTONE
109436	Interpretation from Screen	7/02/1977	18	32.91	MUDSTONE
109443	Interpretation from Screen	9/04/1981	42	48	SHALE
109446	Interpretation from Screen	31/05/1985	135	150	BASALT
109437	Interpretation from Screen	26/06/1978	62	66	BASALT
109434	Interpretation from Screen	31/05/1976	44.19	54.25	SANDSTONE
109419	Interpretation from Screen	21/05/1962	43.59	44.5	BASALT
109430	Interpretation from Screen	30/07/1973	76.2	99.06	BASALT
109449	Interpretation from Screen	10/02/1988	70	77	MUDSTONE
79252	Interpretation from Screen	9/02/1974	27.43	32.61	SILTSTONE
79260	Interpretation from Screen	1/06/1982	15	38	MUDSTONE
79256	Interpretation from Screen	2/07/1982	61	97	BASALT
	Interpretation from Casing	11/05/2003	-3	35	SILTSTONE
	Interpretation from Slot. Scrn.	11/05/2003	35	52	MUDSTONE
	Interpretation from Screen	19/12/1994	36	42	SILTSTONE
	Interpretation from Screen	19/12/1994	53	59	NOT KNOWN
	Interpretation from Screen	19/12/1994	71.5	75	NOT KNOWN
	Interpretation from Casing	16/02/2010	0.5	88	BASALT
	Interpretation from Casing	16/02/2010	94	100	NOT KNOWN
WRK054905		16/02/2010	88	94	BASALT
79257	Interpretation from Screen	14/09/1980	78	84	SANDSTONE
79268	Interpretation from Screen	5/04/1990	87	93	SANDSTONE
WRK967423	Interpretation from Slot. Scrn.	1/06/2005	70	93	SANDSTONE
79264	Interpretation from Screen	4/03/1987	18	24	NOT KNOWN
52428	Interpretation from Screen	18/10/1989	30	36	SAND
79266	Interpretation from Screen	8/12/1988	66	93	SLATE
52418	Interpretation from Screen	13/09/1974	35.36	42.36	BASALT
79259	Interpretation from Screen	24/02/1983	114	119	SANDSTONE
79254	Interpretation from Screen	1/12/1975	47	55	MUDSTONE
109453	Interpretation from Screen	17/01/1989	50	54	BASALT
79258	Interpretation from Screen		56	58	BASALT
79263	Interpretation from Screen	6/08/1982	27	74.67	BASALT
134012	Interpretation from Screen	11/03/1998	31.6	37.6	BASALT
52415	Interpretation from Screen	7/08/1971	48.76	51.81	NOT KNOWN
WRK056556		10/06/2010	0	22	SANDSTONE
WRK056556		10/06/2010	22	28	SILTSTONE
79265	Interpretation from Screen	10/05/1976	32	42.67	NOT KNOWN
134010	Interpretation from Screen	10/03/1998	30.3	36.3	NOT KNOWN
134011	Interpretation from Screen	11/03/1998	28.8	34.8	NOT KNOWN
109432	Interpretation from Screen	3/04/1975	20	39.5	SCORIA

Bore ID	Date	Interval from	Interval to	Description
109452	3/07/1989	0	1	TOPSOIL
109452	3/07/1989	1	24.3	CLAY
109452	3/07/1989	24.3	45	MUDSTONE
109452	3/07/1989	45	57	HONEY COMB ROCK
109452	3/07/1989	57	78	BASALT
109452	3/07/1989	78	94	MUDSTONE
109452	3/07/1989	94	121	BASALY
109442	29/04/1981	0	0.1	TOP SOIL
109442	29/04/1981	0.1	3.6	FIRM RED CLAY
109442	29/04/1981	3.6	4.2	CLAYEY DECOMPOSED BASALT
109442	29/04/1981	4.2	15	MEDIUM HARD HONEYCOMB BASALT
109442	29/04/1981	15	30.5	MEDIUM HARD BLUE BASALT
109442	29/04/1981	30.5	35	MEDIUM HARD BASALT AND SCORIA
109442	29/04/1981	35	37.5	FIRM BAKED RED CLAY
109442	29/04/1981	37.5	39.6	HARD BASALT
109450	22/04/1989	0	0.5	SOIL
109450	22/04/1989	0.5	6	BASALT
109450	22/04/1989	6	13	BASALTIC CLAY
109450	22/04/1989	13	16	BASALT
109450		16	22	MOTTLED CLAY
109450		22	36	YELLOW MUDSTONE
109450		36	120	GREY SILTSTONE
109445	1/03/1983	0	29	BASALT
109445	1/03/1983	29	48	MUDSTONE
109445	1/03/1983	48	107	GREY MUDSTONE
109445	1/03/1983	107	115	GREY SANDSTONE
109429	30/10/1971	0	21.34	MEDIUM HARD BASALT
109429		21.34	30.48	HARD BASALT
109429		30.48	33.83	CLAYEY DECOMPOSED BASALT
109429		33.83	49.07	CLAYEY DECOMPOSED MUDSTONE
109429		49.07	62.48	SOFT GREY MUDSTONE
109429		0	02.40	TOP SOIL
109441		0.1	1.2	FINE CLAYEY BOULDES
109441		1.2	4.5	MEDIUM HARD BASALT (CLAY LAYERS)
109441	10/10/1980		4.5 19.7	HARD BASALT (CLAT LATERS)
109441		4.5 19.7	26.5	RED BASALT AND SCORIA
109441		26.5	20.5	HARD BASALT
109441			29 33.5	MEDIUM HARD BASALT WITH TRACES OF CLAY
109441	10/10/1980 10/10/1980		37.5	STIFF RED CLAY
109441 109441		33.5 37.5	37.5 51	FIRM RED BAKED CLAY
109441		51	78	MEDIUM HARD GREY MUDSTONE
109441		78	94.5	MEDIUM HARD BLUE SHALE
109440	4/08/1980	0	7	
109440	4/08/1980	7	18	WEATHERED BASALT
109440	4/08/1980	18	42	SOFT SANDSTONE
109440	4/08/1980	42	82	GREY MUDSTONE
	31/01/1995	0	5	ROCK
WRK032473		5	15	SCORIA
WRK032473			18	WHITE CLAY
WRK032473		18	166	BASALT
109428	4/11/1971	0	0.3	TOP SOIL
109428	4/11/1971	0.3	0.91	BROWN CLAY
109428	4/11/1971	0.91	3.05	BASALT BOULDERS
109428	4/11/1971	3.05	41.7	BASALT ROCK LAYERS
79261		0	2	TOP SOIL
79261	5/08/1982	2	60	BASALT
	26/01/2009		5	topsoil clay
WRK988836			30	basalt
WRK988836			47	fractured basalt
109438	1/11/1978	0	25	BASALT
109438	1/11/1978	25	40	DECOMPOSED BASALT
109438	1/11/1978	40	45	CLAY
109436	7/02/1977	0	2	TOP BASALTIC CLAY
109436	7/02/1977	2	3	HARD BASALT
109436	7/02/1977	3	6	WEATHERED BASALT
109436	7/02/1977	6	12	HARD BASALT
109436	7/02/1977	12	14	CLAY
109436	7/02/1977	14	15	WEATHERED BASALT
109436	7/02/1977	15	19	CLAY
109436	7/02/1977	19	32.91	WEATHERED BASALT
109443	9/04/1981	0	1	CLAY
109443	9/04/1981	1	33	WEATHERED BASALT
109443	9/04/1981	33	46	HARD BASALT
109443	9/04/1981	46	40	CLAY
103443	J/UH/1301	טד	05	ULAI

Bore ID	Date	Interval from	Interval to	Description
143984		0	1	VOLCANIC TOP SOIL AND CLAY
143984		1	2	CLAY AND BASALT
143984	11/12/1999		13	BOULDERS
143984	11/12/1999		21	RED CLAY
143984		21	48	MUSDSTONE
143984	11/12/1999		53	SANDSTONE
143984		53	93	GREY SANDSTONE
109446	31/05/1985		150	BASALT
	26/06/1978		3	
109437	26/06/1978		37	WEATHERED BASALT
	26/06/1978		41	HARD BASALT
		41	55	CLAY
109437	26/06/1978		66	MUDSTONE
139974	20/02/1999		1	SOIL & CLAY
139974	20/02/1999	1	40	BASALT
139974	20/02/1999	40	50	RED CLAY
139974	20/02/1999	50	65	BROWN/GREY CLAY
139974	20/02/1999	65	75	SILURIAN MUDSTONE
139974	20/02/1999	75	85	BROWN SANDSTONE
143839	9/09/1999	0	1	TOP SOIL AND CLAY
143839	9/09/1999	1	3	CLAY
143839	9/09/1999	3	18	SUBSOIL AND CLAY
143839	9/09/1999	18	34	BLUESTONE
143839	9/09/1999	34	63	HARD BLUESTONE
112643		0	3	BROWN TOP SOIL
112643		3	27.43	BROKEN BASALT
	22/11/2005		0.7	SILTY CLAY
109434	31/05/1976		1.52	TOP SOIL
	31/05/1976		21.34	BASALT
109434	31/05/1976		47.24	DECOMPOSED BASALT
109434	31/05/1976		54.25	HARD BASALT
109430	30/07/1973		99.06	CLAY AND BASALT
109449	10/02/1988		3	CLAY
109449	10/02/1988	-	7	BASALT
109449	10/02/1988		15	BASALTIC CLAYS
109449	10/02/1988		40	YELLOW MUDSTONE
109449	10/02/1988		69	GREY SILTSTONE
109449	10/02/1988	69	77	GREY SANDSTONE
79252	9/02/1974	0	0.3	TOP SOIL
79252	9/02/1974	0.3	32.61	BASALT ROCK
140205	24/01/2000	0	0.5	SOIL & FILL
140205	24/01/2000	0.5	2	BROWN CLAY
140205	24/01/2000	2	8	BASALT
140205	24/01/2000	8	33.6	WEATHERED BASALT
79255	1/02/1980	0	1	SOIL AND CLAY
79255	1/02/1980	1	10	BASALT
79255	1/02/1980	10	13	VOLCANIC CLAY
79255	1/02/1980	13	17	HONEYCOMB BASALT
79255	1/02/1980	17	32	BASALT VERY HARD
79255	1/02/1980	32	45	SILURIAN CLAYS
79260	1/06/1982	0	0.1	TO SOIL
79260	1/06/1982	0.1	15.2	MOTTLED CLAY
79260	1/06/1982	15.2	22.8	BASALT
79260		22.8	25.8	SCORIA
79260	1/06/1982	25.8	25.8	RED CLAY
	1/06/1982	25.0	20.0 38	BASALT
79260	2/07/1982	20.0	30 1	TOP SOIL AND CLAY
		-		
79256	2/07/1982	1	8.7	
	2/07/1982	8.7	10	RED VOLCANIC CLAY
79256	2/07/1982	10	13	HONEYCOMB BASALT
	2/07/1982	13	20.7	BASALT
	2/07/1982	20.7	48	SILURIAN CLAYS
79256	2/07/1982	48	60.8	GREY CLAYEY SHALE
	2/07/1982	60.8	97	SLATE
WRK043244			2.3	GREY TOPSOIL & SUBSOIL
WRK043244			9	FHARD BLUESTONE
WRK043244			16	BLUESTONE
WRK043244		-	27	RED BROWN SCORIA
WRK043244	11/05/2003	27	36	BROWN SCORIA
WRK043244	11/05/2003	36	52	RED SCORIA
WRK043244			52.1	YELLOW CLAY
WRK043244			52.8	YELLOW CLAY & GRANITE
WRK043244			55	SAND PIPE CLAY
112781	29/03/1992		9.5	OVERBURDEN
	29/03/1992		24	BASALT
			28.5	CLAY
112781	29/03/1992	24		
112781 112781	29/03/1992			
112781 112781 112781	29/03/1992 29/03/1992 29/03/1992	28.5	20.5 32 58	SAND HARD GRANITIC ROCK (BLUE)

Bore Dot Interval from Interval: Description WRK042245 191/21994 0.2 2 BASALT WRK042245 191/21994 2.2 2.4 BASALT WRK042245 191/21994 2.4 2.0 RED AND YELLOW MOTTLED CLAY WRK042245 191/21994 2.6 A5.0 RED SILTY CLAY WRK042245 191/21994 4.5 7.0 YELLOW TO BROWN SILTSTONE WRK042945 160/22010 0 1.5 Dasalt WRK049405 160/22010 3.0 4.0 sandstone WRK049405 160/22010 3.0 4.0 sandstone WRK049405 160/22010 3.0 4.0 sandstone YZ257 14/09/1980 1.8 1.8 CLAY YZ257 14/09/1980 1.8 YEL YEL YZ257 14/09/1980 1.6 T.4 YEL YZ257 14/09/1980 1.6 S.C YEL YZ257 14/09/1980 1.6 S.C					
WRK042846 19/12/1984 2.7 SOL AVD WRK042845 19/12/1984 2.7 22 BASALT WRK042845 19/12/1984 2.2 2.4 WEATHERED BASALT WRK042845 19/12/1984 2.2 2.4 WEATHERED BASALT WRK042845 19/12/1984 2.6 RED AND YELLOW TO BOROWN SULTSTONE WRK042845 19/12/1984 7.0 YELLOW TO BOROWN SULTSTONE WRK042945 19/12/1984 7.0 YELLOW TO BOROWN SULTSTONE WRK054905 16/02/2010 4.0 10.0 File BASALT V257 14/09/1980 18 18.2 CLAY V257 14/09/1980 18 18.2 CLAY V257 14/09/1980 16 67 BE BASALT V257 14/09/1980 16 67	Bore ID	Date	Interval from	Interval to	Description
WRK042945 19/12/1984 2.7 2.2 BASALT WRK042945 19/12/1984 2.2 2.4 WEATHERED BASALT WRK042945 19/12/1984 2.6 RED AND YELLOW MOTTLED CLAY WRK042945 19/12/1984 4.6 TO YELLOW TO BROWN SILTSTONE WRK042945 19/12/1984 4.6 TO YELLOW TO BROWN SILTSTONE WRK042945 19/12/1984 4.6 TO YELLOW TO BROWN SILTSTONE WRK04905 16/02/2010 0 1.5 Basali MWR04905 16/02/2010 3.0 40 sandstone WRK054905 16/02/2010 3.0 40 sandstone TAND TAND					
WRK042845 19/12/1984 12 24 WEATHERED BASALT WRK042845 19/12/1984 26 RED AND YELLOW MOTTLED CLAY WRK042845 19/12/1984 26 RED AND YELLOW TO BROWN SILTSTONE WRK042845 19/12/1984 70 YELLOW TO BROWN SILTSTONE WRK054905 16/02/2010 15 Dasaft WRK054905 16/02/2010 40 sandstone WRK054905 16/02/2010 40 Ion VRK054905 16/02/2010 40 Ion 79257 14/04/1880 18 18.2 CLAY 79257 14/04/1880 18 47 HERD LANPERED BASALT 79257 14/04/1880 67 69 BASALT 79257 14/04/1880 67 69 BASALT 79257 14/04/1880 67 60 CLAY 79257 14/04/1880 0 6.6 SOL 79257 14/04/1880 0 6.6 SOL 79257 14/04/1880			2.7		
WRK402495 19/21994 24 26 RED SILTY CLAY WRK402495 19/21994 45 70 YELLOW TO BROWN SILTSTONE WRK402495 19/21994 45 70 YELLOW TO BROWN SILTSTONE WRK402495 16/02/2010 0 15 basalt WRK604905 16/02/2010 30 40 sandstone WRK604905 16/02/2010 10 10 andstone WRK604905 16/02/2010 10 10 andstone YRK604905 16/02/2010 10 10 andstone YRK604905 16/02/2010 10 10 Indextone YRK674905 16/02/2010 10 10 Indextone YRK674905 16/02/2010 10 10 Indextone YRK7 14/09/1980 18 12.2 LAV YRK7 14/09/1980 16 FR PED CLAYEE DECOMPOSED BASALT YRK7 14/09/1980 16 FR PED SASALT YRK8 50				24	WEATHERED BASALT
WRK02295 19/21/994 26 45 RED SILTY CLAY WRK02295 19/21/994 70 150 GREY SILTSTONE AND SANDSTONE WRK02495 19/21/994 70 150 GREY SILTSTONE AND SANDSTONE WRK054905 16/02/2010 0 15 basati WRK054905 16/02/2010 0 40 andstone WRK054905 16/02/2010 0 18 weather Basatione WRK054905 16/02/2010 0 18 WEATHERED BASALT 79257 14/09/1980 18 18.2 CLAY 79257 14/09/1980 67 69 BASALT 79257 14/09/1980 67 89 BASALT 79257 14/09/1980 68 50 BASALT 79257 14/09/1980 78 84 WEATHERED BASALT 79257 14/09/1980 63 50 BASALT 79268 5/04/1990 0.6 50 BASALT 79268 5/04/1990					
WRK40245 19/21994 46 70 YELLOW TO BROWN SILTSTONE WRK042905 16/022010 0 15 basalt WRK04905 16/022010 30 40 sandstone WRK04905 16/022010 30 40 sandstone WRK04905 16/022010 40 100 Inor WRK04905 16/022010 40 sandstone WRK04905 16/022010 40 sandstone 72827 14/09/1980 18 18.2 CLAY 72827 14/09/1980 18 12.2 CLAY 72827 14/09/1980 16 67 RED CLAYEE DECOMPOSED BASALT 72827 14/09/1980 16 67 RED CLAYEE DECOMPOSED BASALT 72827 14/09/1980 16 68 Solu 72828 5/04/1990 0 6.6 Solu 72828 5/04/1990 10 6.6 GREY SILTSTONE 72828 5/04/1990 10 30 Solu <td></td> <td></td> <td></td> <td></td> <td></td>					
WRK02495 19/12/1994 70 150 GREY SILTSTONE AND SANDSTONE WRK054905 16/02/2010 0 15 basalt WRK054905 16/02/2010 0 40 andstone WRK054905 16/02/2010 0 100 ine sandstone WRK054905 16/02/2010 0 100 ine sandstone YRK054905 16/02/2010 100 Ine sandstone YRK074905 16/02/2010 100 Ine sandstone YRK074905 16/02/2010 100 Ine sandstone YRK074905 16/01/19/1980 18 Ine Xethere DaSALT YRK77 14/09/1980 67 69 BASALT YZ877 14/09/1980 67 69 BASALT YZ877 14/09/1980 67 69 BASALT YZ828 5/04/1990 0.6 S0L BASALT YZ828 5/04/1990 0.6 SOL CLAY YZ828 5/04/1990 0.7 80 MUDSTONE					
WRR64905 Fi0022010 0 15 basalt WRR64905 Fi0022010 30 40 sandstone WRR64905 Fi0022010 30 40 sandstone WRR64905 Fi0022010 30 40 sandstone 78257 14091980 18 WEATHERED BASALT 78257 14091980 18 2.43 78257 14091980 67 RED CLAYEE DECOMPOSED BASALT 78257 14091980 67 BASALT 78257 14091980 68 73 BLACK CLAY 78257 14091980 68 73 BLACK CLAY 78268 50041990 0.6 50 BASALT 78268 50041990 0.6 50 BASALT 79286 50041990 70 80 MUDSTONE 79286 50041990 70 80 MUDSTONE 79286 50041990 0.3 S0L 120765 19/12/1933 54 BASAL					
WRK64905 16/022010 30 40 WRK64905 16/022010 40 100 fine sandstone WRK64905 16/022010 40 100 fine sandstone YRK64905 16/022010 40 100 fine sandstone YRK64905 16/02190 18 18.2 CLAY YRK77 14/09/1980 18 18.2 CLAY YRK77 14/09/1980 67 69 BASALT YZ827 14/09/1980 63 BASALT YZ828 S/04/1980 0.6 SOL YZ828 S/04/1980 0.6 SOL YZ828 S/04/1980 0.6 GR CPC LAY YZ828 S/04/1980 0.3 SOL YZ285 S/04/1990 0.3 SOL					
WRK054005 I602/2010 40 andstone WRK054005 I602/2010 40 100 YRK054005 I40091'880 18 WEATHERED BASALT YR257 I4091'880 18 2 CLAY YR257 I4091'880 18 43 WEATHERED BASALT YR257 I4091'880 67 69 BASALT YR257 I4091'880 63 73 BLACK CLAY YR257 I4091'880 69 73 BLACK CLAY YR257 I4091'880 69 73 BLACK CLAY YR257 I4091'880 69 61 SOLT YR268 SOL41'980 0 65 SOL YR268 SOL41'980 60 70 MOTTLED CLAY YR268 SOL41'980 10 35 BASALT YR268 SOL41'980 10 35 BASALT YR268 SOL41'980 10 30 SOL YR268 SOL41'980					
WRK054005 16002/1001 100 Ine sandstone 72257 14/091'880 18.2 CLAY 72257 14/091'880 18.2 CLAY 72257 14/091'880 63 51 HARD DASALT 72257 14/091'880 63 51 HARD DASALT 72257 14/091'880 67 69 BASALT 72257 14/091'880 67 78 BACK CLAY 72257 14/091'880 63 73 BALCK CLAY 72257 14/091'880 63 50 BASALT 72268 50/4/1990 0 55 BASALT 72268 50/4/1990 65 60 GREY CLAY 72268 50/4/1990 60 3 SOIL 72268 50/4/1990 63 54 BASALT 72268 50/4/1990 0 3.3 SOIL 72268 50/4/1990 0 0.3 SOIL 72266 19/12/1993 63 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
79257 14/09/1980 18 WEATHERED BASALT 70257 14/09/1980 18.2 CLAY 70257 14/09/1980 18.2 CLAY 70257 14/09/1980 51 67 RED CLAYEE DECOMPOSED BASALT 7257 14/09/1980 61 67 RED CLAYEE DECOMPOSED BASALT 7257 14/09/1980 63 BLACK CLAY 14/09/1980 72567 14/09/1980 63 BLACK CLAY 14/09/1980 72568 5/04/1990 0.6 SOLL 14/09/1980 72588 5/04/1990 50 55 RED BASALT 72688 5/04/1990 50 55 RED BASALT 72888 5/04/1990 50 55 RED BASALT 72888 5/04/1990 60 70 MOTTLED CLAY 72888 5/04/1990 70 80 MUDSTONE 72876 19/12/1983 54 57 RED CLAY 120765 19/12/1983 54 57 RED CLAY				-	
72257 14/09/1980 18.2 LAY 72257 14/09/1980 18.2 43 WEATHERED BASALT 72257 14/09/1980 67 69 BASALT 72257 14/09/1980 63 SOL SOL 72257 14/09/1980 63 SOL SOL 72268 SO/4/1990 60 GSALT SOL 72268 SO/4/1990 65 60 GREY SULSTONE 72268 SO/4/1990 80 350L SOL 72676 19/12/1993 0 3 SOL 72676 19/12/1993 63 80 MUDDTONE 72676 19/12/1993 112 GREY SULSTONE SUPSTONE 72765					
72257 14/09/1980 18.2 43 WEATHERED BASALT 72257 14/09/1980 61 67 RED CLAYEE DECOMPOSED BASALT 72257 14/09/1980 69 73 BLACK CLAY 72257 14/09/1980 69 73 BLACK CLAY 72257 14/09/1980 69 73 BLACK CLAY 72267 14/09/1980 60 0.6 SOLL 72268 5/04/1990 60 50 BASALT 72268 5/04/1990 60 70 MOTTLED CLAY 72268 5/04/1990 60 70 MOTTLED CLAY 72268 5/04/1990 70 80 MUDSTONE 72268 5/04/1990 70 80 MUDSTONE 72268 19/12/1993 0.3 54 57 72676 19/12/1993 63 70 RED CLAY 72676 19/12/1993 63 80 MUDSTONE 72676 19/12/1993 63 70 <td< td=""><td></td><td></td><td>-</td><td></td><td></td></td<>			-		
79257 14/09/1980 51 HARD BASALT 79257 14/09/1980 67 69 BASALT 79257 14/09/1980 60 50 BASALT 79268 5/04/1990 6. 50 BASALT 79268 5/04/1990 6. 50 RESALT 79268 5/04/1990 60 GREY CLAY 79288 5/04/1990 60 0.3 SOIL 79288 5/04/1990 80 0.3 SOIL 120765 19/12/1993 6.3 SOIL CLAY 120765 19/12/1993 6.7 RED CLAY CLAY 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765					WEATHERED BASALT
79257 14/09/1980 67 69 BASALT 79257 14/09/1980 69 73 BLACK CLAY 79257 14/09/1980 73 BLACK CLAY 79268 5/04/1990 0 6.6 SOLL 79268 5/04/1990 0.6 SOL 72368 79268 5/04/1990 50 55 RED BASALTC CLAY 79268 5/04/1990 50 60 GREY CLAY 79268 5/04/1990 60 70 MUDSTONE 79268 5/04/1990 70 80 MUDSTONE 79268 5/04/1990 0 0.3 SOL 120765 19/12/1993 0 0.3 SOL 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 10 1.5 SOLL ASUB					
72257 14/09/1980 67 69 BASALT 72557 14/09/1980 73 BLACK CLAY 72568 5/04/1990 0.6 SOL 72686 5/04/1990 0.6 SOL 72686 5/04/1990 50 55 RED BASALT 72268 5/04/1990 50 GG REY CLAY 72268 5/04/1990 80 96 GREY SILTSTONE 72268 5/04/1990 80 96 GREY SILTSTONE 72268 5/04/1990 80 96 GREY SILTSTONE 72268 5/04/1993 0 3 SOLL 120765 19/12/1933 57 63 YELLOW CLAY 120765 19/12/1933 80 112 GREY SILTSTONE 120765 19					RED CLAYEE DECOMPOSED BASALT
72257 14/09/1980 69 73 BLACK CLAY 72257 14/09/1980 0 0.6 SOIL 72268 5/04/1990 0 0.6 SOIL 72268 5/04/1990 50 55 RED BASALTIC CLAY 72268 5/04/1990 50 55 RED BASALTIC CLAY 72268 5/04/1990 60 70 MOTTED CLAY 72268 5/04/1990 80 96 GREY SILTSTONE 72268 5/04/1993 80 96 GREY SILTSTONE 120765 19/12/1933 63 SOIL TC 120765 19/12/1933 63 80 MUDSTONE 120765 19/12/1933 81 112 GREY SILTSTONE 120765 19/12/1933 81 112 BACKFILLED 120765 19/12/1933 81 112 BACKFILLED WR4867423 106/2005 2 1 BUESTONE WR4867423 106/2005 21 49 MUDSTONE </td <td>79257</td> <td></td> <td></td> <td>69</td> <td></td>	79257			69	
7227 14/09/1980 73 84 WEATHERED BASALT 79268 5/04/1980 0.6 SOIL 79268 5/04/1990 0.6 SO 79268 5/04/1990 50 SF RED BASALTIC CLAY 79268 5/04/1990 60 70 MOTTLED CLAY 79268 5/04/1990 80 96 GREY SILTSTONE 79268 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0.3 54 BASALT 120765 19/12/1993 57 63 YELLOW CLAY 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 115 GREY SILTSTONE 120765 19/12/1993 80 116 GREY SILTSTONE 120765 19/12/1993 11 GRESTONE <td< td=""><td></td><td></td><td></td><td></td><td>-</td></td<>					-
72288 5/04/1990 0.6 6.6 BASALT 72868 5/04/1990 50 55 RED BASALTIC CLAY 72868 5/04/1990 50 55 RED BASALTIC CLAY 72868 5/04/1990 60 70 MOTTLED CLAY 72868 5/04/1990 80 96 GREY SILTSTONE 72868 5/04/1993 0.3 SOL 1002705 120765 19/12/1993 0.3 54 BASALT 120765 19/12/1993 54 57 RED CLAY 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 12 118 BACKFILLED WRK967423 1/06/2005 3 21 BLUESTONE WRK967423 1/06/2005 3 210 BLOSTONE WRK967423 1/06/2005 49 30					
79288 5/04/1990 0.6 50 BASALT 79288 5/04/1990 55 60 GREY CLAY 79288 5/04/1990 60 70 MOTTLED CLAY 79288 5/04/1990 80 MUDSTONE 79288 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0.3 SOIL 120765 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 15 BASALT 120765 19/12/1993 112 GREY SILTSTONE 120765 19/12/1993 15 15 BASALT <td></td> <td></td> <td></td> <td></td> <td></td>					
79288 5/04/1990 50 55 RED BASALTIC CLAY 79288 5/04/1990 60 70 MOTTLED CLAY 79288 5/04/1990 70 80 MUDSTONE 79288 5/04/1990 80 96 GREY SILTSTONE 79288 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0.3 54 BASALT 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 10 118 BACKFILLED WRK967423 1/06/2005 0 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 3 15 SOIL & CLAY 116348 31/08/1993 1.5 5 BASALT 116348 31/08/1993 30			-		
79288 5/04/1990 55 60 GREY CLAY 79288 5/04/1990 70 80 MUDSTONE 79288 5/04/1990 70 80 MUDSTONE 79288 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0.3 SOLL 120765 19/12/1993 67 63 YELLOW CLAY 120765 19/12/1993 87 63 YELLOW CLAY 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 GREY SILTSTONE 106/100 WRK967423 1/06/2005 2 1 BUDESTONE WRK967423 1/06/2005 3 15 BASALT 116348 31/08/1993 1.5 15 BASALT 116348 31/08/1993 3.5 166 <					
79288 5/04/1990 60 70 MOTTLED CLAY 79288 5/04/1990 80 96 GREY SILTSTONE 79286 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0.3 54 BASALT 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 83 80 MUDSTONE WRK967423 106/2005 3 118 BACKFILLED WRK967423 106/2005 2 1 80 MUDSTONE WRK967423 106/2005 2 1 80 MUDSTONE WRK967423 106/2005 4 9 BEDROCK 116348 3108/1993 1.5 SOL & CLAY 116348 3108/1993 3.5 106 SULLEXIAN MUDSTONE, SANDSTONE WRV985085 210/2/2008 1 TOP SOL					
79288 5/04/1990 70 80 96 GREY SILTSTONE 79268 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0 0.3 SOIL 120765 19/12/1993 57 RED CLAY 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 GREY SILTSTONE 19/12/1993 120765 19/12/1993 112 GREY SILTSTONE 10/16/16/16/16/16/16/16/16/16/16/16/16/16/					
79288 5/04/1990 80 96 GREY SILTSTONE 120765 19/12/1993 0.3 SOIL 1 120765 19/12/1993 54 BASALT 1 120765 19/12/1993 57 RED CLAY 1 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 IBACKFILLED 1 WRK967423 1/06/2005 3 21 BLUESTONE WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 3 21 BLUESTONE WRK967423 1/06/2005 1 50 SOIL & CLAY 116348 31/08/1993 1.5 50 SOIL & CLAY 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 </td <td></td> <td></td> <td></td> <td>-</td> <td></td>				-	
120765 19/12/1993 0.3 SolL 120765 19/12/1993 54 57 RED CLAY 120765 19/12/1993 54 57 RED CLAY 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 118 BACKFILLED WRK807423 1/06/2005 0 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 1.5 15 BASALT 116348 31/08/1993 3.0 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 3.0 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 3.0 35 REDOISH, ORANGE CLAY HARD, DRY 116348 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
120765 19/12/1993 0.3 54 BASALT 120765 19/12/1993 54 57 RED CLAY 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 118 BACKFILLED WRK967423 1/06/2005 2 1 BJUESTONE WRK967423 1/06/2005 21 BJUESTONE WRK967423 1/06/2005 21 BJUESTONE WRK967423 1/06/2005 15 SOIL & CLAY 116348 31/08/1993 1.5 SOIL & CLAY 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 30 5 SCORIA WRK985065 21/02/2008 1 5 SCARIA </td <td></td> <td></td> <td></td> <td></td> <td></td>					
120765 19/12/1993 57 RED CLAY 120765 19/12/1993 63 WLLOW CLAY 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 118 BACKFILLED WRK967423 1/06/2005 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 15 15 BASALT 116348 31/08/1993 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK980505 21/02/2008 1 TOP SOIL WRK980565 VIRC92006 1 TOP SOIL WRK985065 21/02/2008 5 VRK985065 21/02/2008 40			-		
120765 19/12/1993 63 YELLOW CLAY 120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 112 GREY SILTSTONE 120765 19/12/1993 112 118 BACKFILLED WRK967423 1/06/2005 0 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 21 BUESTONE WRK967423 1/06/2005 21 49 WRK967423 1/06/2005 21 49 WRK967423 1/06/2005 21 BUESTONE WRK967423 1/06/2005 15 SOIL & CLAY 116348 31/08/1993 15 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 1 TOP SOIL WRK985085 VIRV2/2008 1 TOP SOIL WRK985085 21/02/2008 15					
120765 19/12/1993 63 80 MUDSTONE 120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 I18 BACKFILLED WRK967423 1/06/2005 0 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLFIAN MUDSTONE, SANDSTONE WRK980505 21/02/2008 1 TOP SOIL WRK98055 WRK980505 21/02/2008 5 BASALT WRK980505 21/02/2008 5 15 SCORIA WRK98055 21/02/2008 5 16 VRK985055 21/02/2008 <t< td=""><td></td><td></td><td></td><td></td><td>-</td></t<>					-
120765 19/12/1993 80 112 GREY SILTSTONE 120765 19/12/1993 112 118 BACKFILLED WRK967423 1/06/2005 3 21 BLUESTONE WRK967423 1/06/2005 3 21 BLUESTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 10 BASALT 116348 31/08/1993 30 35 REDDISH, ORAGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDDISH, ORAGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDDISH, ORAGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDDISH, ORAGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDDISH, ORAGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDISH, ORAGE CLAY HARD, DRY WRK985085 21/02/2008 1 SCORTA W					
120765 19/12/1993 112 118 BACKFILLED WRK967423 1/06/2005 0 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 10 SCORIA SCORIA WRK985085 21/02/2008 48 90 BASALT 52428					
WRK967423 1/06/2005 0 3 TOP SOIL & SUB SOIL WRK967423 1/06/2005 3 21 BLUESTONE WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 BASALT 116348 116348 31/08/1993 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 VRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 40 SCORIA SCORIA WRK985085 21/02/2008 48 90 BASALT 52428 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
WRK967423 1/06/2005 2 1 49 MUDSTONE WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 15 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 1 5 SCORIA WRK985085 21/02/2008 1 5 SAALT WRK985085 21/02/2008 25 40 SCORIA WRK985085 21/02/2008 48 90 BASALT S2428 18/10/1989 0 0.1 SOIL S2428 18					
WRK967423 1/06/2005 21 49 MUDSTONE WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 BASALT 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WK9895085 WRK985085 21/02/2008 5 5 BASALT WK9895085 WRK985085 21/02/2008 15 25 BASALT WK9895085 WRK985085 21/02/2008 15 25 BASALT WK9895085 WRK985085 21/02/2008 48 90 BASALT WK9895085 21/02/2008 48 90 BASALT VRK985085 21/02/2008 48 90 BASALT SE428 18/10/1989 2 25 BASALT S2428					
WRK967423 1/06/2005 49 93 BEDROCK 116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 15 BASALT 116348 31/08/1993 1.5 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 30 15 DASALT WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 48 OLAY WRK985085 21/02/2008 49 BASALT S2428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 25 27 RED BASALT 52428 18/10/1989 25 27 RED BASALT 52428 18/10/1989			-		
116348 31/08/1993 0 1.5 SOIL & CLAY 116348 31/08/1993 1.5 15 BASALT 116348 31/08/1993 15 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY VRK985085 21/02/2008 40 2 CLAY S2428 18/10/1989 0 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 52428 18				-	
116348 31/08/1993 1.5 15 BASALT 116348 31/08/1993 15 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 48 90 BASALT 52428 18/10/1989 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 35					
116348 31/08/1993 15 20 SOFT RED VESICULAR BASALT 116348 31/08/1993 20 30 BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 5 40 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 48 90 BASALT S2428 18/10/1989 0 0.1 SOIL S2428 18/10/1989 2 27 RED BASALT S2428 18/10/1989 25 27 RED BASALT S2428 18/10/1989 25 27 RED BASALT S2428 18/10/1989 3			-		
116348 31/08/1993 20 30 BASALT 116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 1 TOP SOIL WRK985085 WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 5 40 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 48 90 BASALT WRK985085 21/02/2008 48 90 BASALT S2428 18/10/1989 0 1 SOIL 52428 18/10/1989 2.7 RED BASALT SE 52428 18/10/1989 2.7 SE BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 1					
116348 31/08/1993 30 35 REDDISH, ORANGE CLAY HARD, DRY 116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 0 1.1 SOIL 52428 18/10/1989 0 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 5 52428 18/10/1989 2 35 BASALT 79266 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
116348 31/08/1993 35 106 SILLRIAN MUDSTONE, SANDSTONE WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 0 1.1 Solut 5 25 BASALT 5 52428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 3 36 GRANITIC CLAY 79266 8/12/1988 10.5 12 CAVITY IN BASALT					-
WRK985085 21/02/2008 0 1 TOP SOIL WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY S2428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 25 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT					
WRK985085 21/02/2008 1 5 BASALT WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 25 40 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY S2428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALT 52428 18/10/1989 25 36 GRANITIC CLAY 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT					
WRK985085 21/02/2008 5 15 SCORIA WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 25 40 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 40 48 CLAY S2428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 25 27 RED BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE </td <td></td> <td></td> <td></td> <td></td> <td></td>					
WRK985085 21/02/2008 15 25 BASALT WRK985085 21/02/2008 25 40 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 48 90 BASALT 52428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0 12 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE <td></td> <td></td> <td></td> <td></td> <td></td>					
WRK985085 21/02/2008 25 40 SCORIA WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 48 90 BASALT S2428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0 1.1 SOIL 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 35 36 GRANITIC CLAY 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 7					
WRK985085 21/02/2008 40 48 CLAY WRK985085 21/02/2008 48 90 BASALT 52428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 35 BASALT 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY					
WRK985085 21/02/2008 48 90 BASALT 52428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 25 27 RED BASALT 52428 18/10/1989 25 35 BASALT 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY <					
52428 18/10/1989 0 0.1 SOIL 52428 18/10/1989 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 30 40 BASALT WRK962170 14/08/2003 53 SILURIAN CLAY			-		
52428 18/10/1989 0.1 2 CLAY 52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 23 36 GRANITIC CLAY 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 0.5 SIL BASALT WRK962170 WRK962170 14/08/2003 0.5 SILU					
52428 18/10/1989 2 25 BASALT 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 40 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY <td></td> <td></td> <td>-</td> <td></td> <td></td>			-		
52428 18/10/1989 25 27 RED BASALTIC CLAY 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY <			-		
52428 18/10/1989 27 35 BASALT 52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLT WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WR					
52428 18/10/1989 35 36 GRANITIC CLAY 79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 52418 13/09/1974 0.3 7.					
79266 8/12/1988 0 1 SOIL AND CLAY 79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY S2418					
79266 8/12/1988 1 10.5 BASALT 79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 18 27 33 MOTTLED CLAY 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/197					
79266 8/12/1988 10.5 12 CAVITY IN BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 12 27 BASALT 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
79266 8/12/1988 12 27 BASALT 79266 8/12/1988 27 33 MOTTLED CLAY 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
79266 8/12/1988 27 33 MOTTLED CLAY 79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY WRK962170 14/08/2003 53 SILURIAN CLAY S2418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
79266 8/12/1988 33 93 SANDSTONE WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 30 40 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					-
WRK962170 14/08/2003 0 0.5 SOIL & CLAY WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 40 53 SILURIAN CLAY WRK962170 14/08/2003 40 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
WRK962170 14/08/2003 0.5 30 BASALT WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 40 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 7.92 16.46 RED CLAY					
WRK962170 14/08/2003 30 40 BASLATIC CLAY WRK962170 14/08/2003 40 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILURIAN CLAY VRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
WRK962170 14/08/2003 40 53 SILURIAN CLAY WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
WRK962170 14/08/2003 53 81 SILTSTONE & SANDSTONE 52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
52418 13/09/1974 0 0.3 TOP SOIL 52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
52418 13/09/1974 0.3 7.92 CLAY AND GRAVEL 52418 13/09/1974 7.92 16.46 RED CLAY					
52418 13/09/1974 7.92 16.46 RED CLAY			-		
52418 13/09/1974 16.46 34.44 SHALE AND CLAY STONE	52418			34.44	SHALE AND CLAY STONE
52418 13/09/1974 34.44 35.36 WEATHERED HORNFELS					
52418 13/09/1974 35.36 42.37 HORNFELS (FISSURED)					
52418 13/09/1974 42.37 79.55 HORNFELS WITH QUARTZ BANDS					
52418 13/09/1974 79.55 91.44 HORNFELS WITH QUARTZ BANDS					
ערייט איז דיט איז	02710	10/00/10/4	10.00	U1.77	

	Date	Interval from	Interval to	Description
WRK966931 2	20/09/2004	0	2	BROWN CLAY
WRK966931 2	20/09/2004	2	7.3	WEATHERED BASALT
WRK966931 2			28.5	BASALT
WRK966931 2			33	WEATHERED BASALT
WRK966931 2			45	BROWN CLAY
WRK966931 2			52	GREY CLAY
WRK966931 2			60.5	SOFT BROWN MUDSTONE
WRK966931 2			67.5	BROWN MUDSTONE
WRK966931 2			70	BLUE MUDSTONE
WRK966931 2			81	FRACTURED BLUE MUDSTONE
WRK966931 2			90.5	BASALT
	24/02/1983		12	BASALT
	24/02/1983		81	MUDSTONE
	24/02/1983	0	119 0.03	GREY MUDSTONE TOP SOIL
		0.03	0.03	SUB SOIL
		0.03	10.3	ROCK
		10.3	10.3	SAND STONE (SOFT)
		11	20.9	CLAY
		20.9	33.4	SAND STONE (SOFT)
		33.4	48.6	SAND STONE (SOLT) SAND STONE WITH S/CLAY
		48.6	55	SOFT SAND STONE
		55	57	CLAY
		0	0.6	BROWN TOPSOIL
		0.6	2	RED CLAY
		2	50	BASALT
109453 1	7/01/1989	50	54	BROKEN BASALT TO RED GRANITIC CLAY @ 54M
WRK960845 2			2.5	SOIL & CLAY
WRK960845 2	25/04/2003	2.5	65	BROWN MUDSTONE & SANDSTONE
WRK960845 2	25/04/2003	65	80	FRACTURED SANDSTONE
WRK960845 2	25/04/2003	80	87	DARK GREY SILTSTONE
WRK991291 4	4/06/2009	0	3	brown clay
WRK991291 4	4/06/2009	3	38	mudstone
WRK991291 4		38	60	sandstone
WRK991291 4		60	76	shale
WRK964250 1		0	1	OVERBURDEN
WRK964250 1		1	3	GREY CLAY
WRK964250 1			9	BASALT
WRK964250 1			10.5	RED CLAY
WRK964250 1			36	BROWN MUDSTONE
WRK964250 1			51	BLUE MUDSTONE
WRK964250 1			66	BASALT
WRK964250 1			75	FRACTURED BASALT
WRK964250 1			80 2	BASALT
		0		CLAY
	23/10/1982		6 17	BASALT
	23/10/1982 23/10/1982		24	HONEYCOMB BASALT BASALT
	23/10/1982		24 27	WEATHERED BASALT
	23/10/1982		31	RED CLAY
		31	58	SANDSTONE
		0	0.2	TOP SOIL
		0.2	6	MOTTLED CLAY
	00/4000	6	74.67	BASALT
WRK043281 1		0	1	TOP SOIL
WRK043281 1		1	3	CLAY & ROCK
WRK043281 1		3	23	BLUESTONE
WRK043281 1		23	32	BASALT
WRK043281 1		32	33	BLUESTONE
WRK960778 1			2	DARK BLACK CLAY
WRK960778 1			8	WEATHERED BASALT
WRK960778 1			33	BASALT
WRK960778 1			48	RED CLAY
WRK960778 1			53	BROWN MUDSTONE
			58.5	BASALT
	9/01/2003 1			
WRK960778 1 WRK960778 1			61.5	FRACTURED BASALT

Bore ID	Date	Interval from	Interval to	Description
134012		0	0.8	FILL & BROWN CLAY
134012	11/03/1998	-	33	SILVURIAN MUDSTONE
134012	11/03/1998		67	GREY SILTSTONE
52415	7/08/1971	0	0.61	TOP SOIL
52415	7/08/1971	0.61	21.34	GREY AND CREAM WEATHERED BASALT
52415	7/08/1971	21.34	30.48	HARD BASALT
52415	7/08/1971	30.48	45.72	WEATHERED BASALT
52415	7/08/1971	45.72	48.77	VERY FINE FLOWING SAND
52415	7/08/1971	48.77	91.4	FINE TO COARSE SAND, MEDIUM GRAVEL WITH COAL
WRK032833		-	1	GREY TOPSOIL AND CLAY
WRK032833		1	7	CLAY
WRK032833		7	18	BASALT
WRK032833			31	GREY GRANITE
WRK056556			2	top soil
WRK056556	10/06/2010	2	21.5	basalt
WRK056556	10/06/2010	21.5	23	basalt with clay bands
WRK056556	10/06/2010	23	26.5	weathered basalt
WRK056556	10/06/2010	26.5	28	red clay
79253	8/10/1974	0	0.3	TOPSOIL
79253	8/10/1974	0.3	1.83	CLAY
79253	8/10/1974	1.83	29.87	BASALT
79253	8/10/1974	29.87	38.1	SILURIAN CLAY
79265	10/05/1976	0	0.61	TOP SOIL
79265	10/05/1976	0.61	2.13	BROWN CLAY
79265	10/05/1976	2.13	33.53	BASALT
79265	10/05/1976	33.53	42.67	SILURIAN CLAYS
134010	10/03/1998	0	0.5	FILL
134010	10/03/1998	0.5	1	BLACK SILTY CLAY
134010	10/03/1998	1	30	MUDSTONE/SILVRIAN
134010	10/03/1998	30	36.3	GREY SILTSTONE
134011	11/03/1998	0	0.1	FILL & CLAY
134011	11/03/1998	-	34.8	SILVRIAN MUDSTONE
109432	3/04/1975	0	36	WEATHERED BASALT
109432	3/04/1975	36	39.5	CLAYEE DECOMPOSED BASALT

Bore ID	Reading date	Reading time	Interval from (m)	Interval to (m)	Parameter name	Parameter value	Unit of measure
109442	29/04/1981	0:00:00	30	39	Conductivity (µS/cm)	12000	µS/cm @ 25°C
109442	29/04/1981	0:00:00	30	39	Calcium, as Ca	47	mg/L
109442	29/04/1981	0:00:00	30	39	Chloride, as Cl	4000	mg/L
109442	29/04/1981	0:00:00	30	39	Carbonate, as CO3	71	mg/L
109442	29/04/1981	0:00:00	30	39	Hardness, as CaCO3 (calc.)	2896	mg/L
109442	29/04/1981	0:00:00	30	39	Bicarbonate, as HCO3	837	mg/L
109442	29/04/1981	0:00:00	30	39	Potassium, as K	18	mg/L
109442	29/04/1981	0:00:00	30	39	Sodium, as Na	1919	mg/L
109442	29/04/1981		30	39	Nitrate, as N	1.354	
109442		0:00:00	30	39	Sulphate, as SO4		mg/L
	29/04/1981	0:00:00				587	mg/L
109442	29/04/1981	0:00:00	30	39	DME Silicate, as SIO3	43	mg/L
109442	29/04/1981	0:00:00	30	39	Iron, total as Fe	3	mg/L
109442	29/04/1981	0:00:00	30	39	Magnesium, as Mg	675	mg/L
109442	29/04/1981	0:00:00	30	39	Total Soluble Salts (Summation	8203	mg/L
109450	22/04/1989	0:00:00	96	120	Conductivity (µS/cm)	14000	µS/cm @ 25°C
109450	22/04/1989	0:00:00	96	120	Total Alkalinity, as CaCO3	290	mg/L
109450	22/04/1989	0:00:00	96	120	Calcium, as Ca	190	mg/L
109450	22/04/1989	0:00:00	96	120	Chloride, as Cl	4800	mg/L
109450	22/04/1989	0:00:00	96	120	Hardness, as CaCO3	3428.03	mg/L
109450	22/04/1989	0:00:00	96	120	Bicarbonate, as HCO3	353.659	mg/L
109450	22/04/1989	0:00:00	96	120	Potassium, as K	35	mg/L
109450	22/04/1989	0:00:00	96	120	Sodium, as Na	1800	mg/L
109450	22/04/1989	0:00:00	96	120	Nitrate & Nitrite, as N(0.15de	1.5	mg/L
109450	22/04/1989	0:00:00	96	120	Silica, total as SiO2	15	mg/L
109450	22/04/1989	0:00:00	96	120	Sulphate, as SO4	390	mg/L
109450	22/04/1989	0:00:00	96	120	Iron (Undigested), as Fe	0.54	mg/L
109450	22/04/1989	0:00:00	96	120	Magnesium, as Mg	710	mg/L
109450	22/04/1989	0:00:00	96	120	Total Dissolved Solids, 105C	7888.8	mg/L
109429	1/11/1971	0:00:00	30.48	62.48	Conductivity (µS/cm)	182	µS/cm @ 25°C
109429	1/11/1971	0:00:00	30.48	62.48	Calcium, as Ca	3	mg/L
109429	1/11/1971	0:00:00	30.48	62.48	Chloride, as Cl	21	
109429			30.48			23	mg/L
	1/11/1971	0:00:00		62.48	Hardness, as CaCO3 (calc.)		mg/L
109429	1/11/1971	0:00:00	30.48	62.48	Bicarbonate, as HCO3	38	mg/L
109429	1/11/1971	0:00:00	30.48	62.48	Magnesium, as Mg	4	mg/L
109429	1/11/1971	0:00:00	30.48	62.48	Total Soluble Salts (Conductiv	136	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Conductivity (µS/cm)	7710	µS/cm @ 25°C
109429	29/08/1972	0:00:00	30.48	62.48	Calcium, as Ca	65	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Chloride, as Cl	2283	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Carbonate, as CO3	56	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Hardness, as CaCO3 (calc.)	1881	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Bicarbonate, as HCO3	805	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Sulphate, as SO4	190	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Iron, total as Fe	195	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Magnesium, as Mg	418	mg/L
109429	29/08/1972	0:00:00	30.48	62.48	Total Soluble Salts (Conductiv	4651	mg/L
109440	26/09/1980	0:00:00	31	82	Conductivity (µS/cm)	15500	µS/cm @ 25°C
109440	26/09/1980	0:00:00	31	82	Calcium, as Ca	194	mg/L
109440	26/09/1980	0:00:00	31	82	Chloride, as Cl	5570	mg/L
109440	26/09/1980	0:00:00	31	82	Hardness, as CaCO3 (calc.)	4436	mg/L
109440	26/09/1980	0:00:00	31	82	Bicarbonate, as HCO3	361	mg/L
109440	26/09/1980	0:00:00	31	82	Potassium, as K	23	mg/L
109440	26/09/1980	0:00:00	31	82	Sodium, as Na	2041	mg/L
109440	26/09/1980	0:00:00	31	82	Nitrate, as N	0.451	mg/L
109440	26/09/1980	0:00:00	31	82	Sulphate, as SO4	1199	mg/L
109440	26/09/1980	0:00:00	31	82	DME Silicate, as SIO3	10	mg/L
109440	26/09/1980	0:00:00	31	82	Magnesium, as Mg	960	mg/L
109440		0:00:00		82	Total Soluble Salts (Summation	10360	
	26/09/1980		31			5688	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Conductivity (µS/cm)		µS/cm @ 25°C
109428	13/12/1971	0:00:00	40.8	41.8	Calcium, as Ca	16	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Chloride, as Cl	1562	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Carbonate, as CO3	35	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Hardness, as CaCO3 (calc.)	1011	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Bicarbonate, as HCO3	716	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Magnesium, as Mg	236	mg/L
109428	13/12/1971	0:00:00	40.8	41.8	Total Soluble Salts (Conductiv	3373	mg/L
109443	9/04/1981	0:00:00	42	48	Conductivity (µS/cm)	6450	µS/cm @ 25°C
109443	9/04/1981	0:00:00	42	48	Calcium, as Ca	16	mg/L
109443	9/04/1981	0:00:00	42	48	Chloride, as Cl	1715	mg/L
109443	9/04/1981	0:00:00	42	48	Carbonate, as CO3	50	mg/L
109443	9/04/1981	0:00:00	42	48	Hardness, as CaCO3 (calc.)	752	mg/L
109443	9/04/1981	0:00:00	42	48	Bicarbonate, as HCO3	989	mg/L
109443	9/04/1981	0:00:00	42	48	Potassium, as K	17	mg/L
109443	9/04/1981	0:00:00	42	48	Sodium, as Na	1282	mg/L
109443			42	48			
	9/04/1981	0:00:00			Nitrate, as N	2.483	mg/L
109443	9/04/1981	0:00:00	42	48	Sulphate, as SO4	176	mg/L
109443	9/04/1981	0:00:00	42	48	DME Silicate, as SIO3	54	mg/L
109443	9/04/1981	0:00:00	42	48	Iron, total as Fe	5	mg/L

	Reading	Reading	Interval	Interval to		Parameter	Unit of
Bore ID	date	time	from (m)	(m)	Parameter name	value	measure
109443	9/04/1981	0:00:00	42	48	Magnesium, as Mg	173	mg/L
109443	9/04/1981	0:00:00	42	48	Total Soluble Salts (Summation	4483	mg/L
109443	9/04/1981	1:00:00	42	48	Conductivity (µS/cm)	6450	µS/cm @ 25°C
109443	9/04/1981	1:00:00	42	48	Calcium, as Ca	16	mg/L
109443	9/04/1981	1:00:00	42	48	Chloride, as Cl	1715	mg/L
109443	9/04/1981	1:00:00	42	48	Carbonate, as CO3	50	mg/L
109443	9/04/1981	1:00:00	42	48	Hardness, as CaCO3 (calc.)	752	mg/L
109443	9/04/1981	1:00:00	42	48	Bicarbonate, as HCO3	989	mg/L
109443	9/04/1981	1:00:00	42	48	Potassium, as K	17	mg/L
109443	9/04/1981	1:00:00	42	48	Sodium, as Na	1282	mg/L
109443	9/04/1981	1:00:00	42	48	Nitrate, as N	2.483	mg/L
109443	9/04/1981	1:00:00	42	48	Sulphate, as SO4	176	mg/L
109443	9/04/1981	1:00:00	42	48	DME Silicate, as SIO3	54	mg/L
109443 109443	9/04/1981	1:00:00	42 42	48 48	Iron, total as Fe Magnesium, as Mg	5 173	mg/L
109443	9/04/1981 9/04/1981	1:00:00	42	48	Total Soluble Salts (Summation	4483	mg/L
109443		1:00:00 0:00:00	62	40 66	Conductivity (µS/cm)	11400	mg/L µS/cm @ 25°C
109437	26/06/1978			66		132	
109437	26/06/1978	0:00:00	62 62	66	Calcium, as Ca Chloride, as Cl	3760	mg/L
109437	26/06/1978 26/06/1978	0:00:00	62	66	,	3528	mg/L
109437					Hardness, as CaCO3 (calc.)	398	mg/L
109437	26/06/1978 26/06/1978	0:00:00	62 62	66 66	Bicarbonate, as HCO3 Potassium, as K	398 19	mg/L mg/L
109437	26/06/1978	0:00:00	62	66	Sodium, as Na	19	mg/L mg/L
109437	26/06/1978	0:00:00	62	66	Sulphate, as SO4	453	mg/L
109437	26/06/1978	0:00:00	62	66	DME Silicate, as SIO3	455	mg/L
109437	26/06/1978	0:00:00	62	66	Magnesium, as Mg	777	mg/L
109437	26/06/1978	0:00:00	62	66	Total Soluble Salts (Summation	6685	mg/L
109437	15/11/1978	0:00:00	62	66	Conductivity (µS/cm)	11250	µS/cm @ 25°C
109437	15/11/1978	0:00:00	62	66	Calcium, as Ca	125	mg/L
109437	15/11/1978	0:00:00	62	66	Chloride, as Cl	3780	mg/L
109437	15/11/1978	0:00:00	62	66	Hardness, as CaCO3 (calc.)	3482	mg/L
109437	15/11/1978	0:00:00	62	66	Bicarbonate, as HCO3	381	mg/L
109437	15/11/1978	0:00:00	62	66	Potassium, as K	21	mg/L
109437	15/11/1978	0:00:00	62	66	Sodium, as Na	1158	mg/L
109437	15/11/1978	0:00:00	62	66	Sulphate, as SO4	445	mg/L
109437	15/11/1978	0:00:00	62	66	DME Silicate, as SIO3	21	mg/L
109437	15/11/1978	0:00:00	62	66	Iron, total as Fe	2	mg/L
109437	15/11/1978	0:00:00	62	66	Magnesium, as Mg	770	mg/L
109437	15/11/1978	0:00:00	62	66	Total Soluble Salts (Summation	6701	mg/L
79250	17/10/1977	0:00:00	-	-	Conductivity (µS/cm)	10800	µS/cm @ 25°C
79250	17/10/1977	0:00:00	-	-	Calcium, as Ca	84	mg/L
79250	17/10/1977	0:00:00	-	-	Chloride, as Cl	3450	mg/L
79250	17/10/1977	0:00:00	-	-	Hardness, as CaCO3 (calc.)	2622	mg/L
79250	17/10/1977	0:00:00	-	-	Bicarbonate, as HCO3	1218	mg/L
79250	17/10/1977	0:00:00	-	-	Potassium, as K	28	mg/L
79250	17/10/1977	0:00:00	-	-	Sodium, as Na	1487	mg/L
79250	17/10/1977	0:00:00	-	-	Nitrate, as N	2.257	mg/L
79250	17/10/1977	0:00:00	-	-	Sulphate, as SO4	94	mg/L
79250	17/10/1977	0:00:00	-	-	DME Silicate, as SIO3	59	mg/L
79250	17/10/1977	0:00:00	-	-	Iron, total as Fe	1	mg/L
79250	17/10/1977	0:00:00	-	-	Magnesium, as Mg	586	mg/L
79250	17/10/1977	0:00:00	-	-	Total Soluble Salts (Summation	7016	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Conductivity (µS/cm)	3265	µS/cm @ 25°C
109434	16/06/1976	0:00:00	44.19	54.25	Calcium, as Ca	41	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Chloride, as Cl	694	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Hardness, as CaCO3 (calc.)	592	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Bicarbonate, as HCO3	810	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Potassium, as K	10	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Sodium, as Na	495	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Sulphate, as SO4	55	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	DME Silicate, as SIO3	59	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Magnesium, as Mg	119	mg/L
109434	16/06/1976	0:00:00	44.19	54.25	Total Soluble Salts (Summation	2283	mg/L
109422	4/04/1975	0:00:00	-	-	Conductivity (µS/cm)	4980	µS/cm @ 25°C
109422	4/04/1975	0:00:00	-	-	Calcium, as Ca	97	mg/L
109422	4/04/1975	0:00:00	-	-	Chloride, as Cl	1108	mg/L
109422	4/04/1975	0:00:00	-	-	Carbonate, as CO3	28	mg/L
109422	4/04/1975	0:00:00	-	-	Hardness, as CaCO3 (calc.)	1115	mg/L
109422	4/04/1975	0:00:00	-	-	Bicarbonate, as HCO3	444	mg/L
109422	4/04/1975	0:00:00	-	-	Potassium, as K	34	mg/L
109422	4/04/1975	0:00:00	-	-	Sodium, as Na	662	mg/L
109422	4/04/1975	0:00:00	-	-	Nitrate, as N	100.451	mg/L
109422	4/04/1975	0:00:00	-	-	Sulphate, as SO4	283	mg/L
109422	4/04/1975	0:00:00	-	-	DME Silicate, as SIO3	70	mg/L
109422	4/04/1975	0:00:00	-	-	Magnesium, as Mg	212	mg/L
109422	4/04/1975	0:00:00			Total Soluble Salts (Summation	3383	mg/L

	Reading	Reading	Interval	Interval to		Parameter	Unit of
Bore ID	date	time	from (m)	(m)	Parameter name	value	measure
109449	10/02/1988	0:00:00	70	77	Conductivity (µS/cm)	9200	µS/cm @ 25°C
109449	10/02/1988	0:00:00	70	77	Total Alkalinity, as CaCO3	380	mg/L
109449	10/02/1988	0:00:00	70	77	Calcium, as Ca	95	mg/L
109449	10/02/1988	0:00:00	70	77	Chloride, as Cl	2900	mg/L
109449	10/02/1988	0:00:00	70	77	Hardness, as CaCO3	2608.415	mg/L
109449	10/02/1988	0:00:00	70	77	Bicarbonate, as HCO3	463.415	mg/L
109449	10/02/1988	0:00:00	70	77	Potassium, as K	23	mg/L
109449	10/02/1988	0:00:00	70	77	Sodium, as Na	1200	mg/L
109449	10/02/1988	0:00:00	70	77	Nitrate + Nitrite, as N(0.003d	0.15	mg/L
109449	10/02/1988	0:00:00	70	77	Silica, total as SiO2	17	mg/L
109449	10/02/1988	0:00:00	70	77	Sulphate, as SO4	430	mg/L
109449	10/02/1988	0:00:00	70	77	Iron, total as Fe	1.8	mg/L
109449	10/02/1988	0:00:00	70	77	Magnesium, as Mg	570	mg/L
109449	10/02/1988	0:00:00	70	77	Total Dissolved Solids, 105C	5252.265	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Conductivity (µS/cm)	6280	µS/cm @ 25°C
79252	9/02/1974	0:00:00	27.43	32.61	Calcium, as Ca	6	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Chloride, as Cl	1727	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Carbonate, as CO3	189	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Hardness, as CaCO3 (calc.)	1551	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Bicarbonate, as HCO3	653	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Potassium, as K	19	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Sodium, as Na	796	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Nitrate, as N	1.806	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Sulphate, as SO4	65	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	DME Silicate, as SIO3	15	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Iron, total as Fe	4	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Magnesium, as Mg	373	mg/L
79252	9/02/1974	0:00:00	27.43	32.61	Total Soluble Salts (Summation	3851	mg/L
79255	14/03/1980	0:00:00	-	-	Conductivity (µS/cm)	9700	µS/cm @ 25°C
79255	14/03/1980	0:00:00	-	-	Calcium, as Ca	48	mg/L
79255	14/03/1980	0:00:00	-	-	Chloride, as Cl	3100	mg/L
79255	14/03/1980	0:00:00	-	-	Hardness, as CaCO3 (calc.)	2215	mg/L
79255	14/03/1980	0:00:00	-	-	Bicarbonate, as HCO3	648	mg/L
79255	14/03/1980	0:00:00	-	-	Potassium, as K	12	mg/L
79255	14/03/1980	0:00:00	-	-	Sodium, as Na	1297	mg/L
79255	14/03/1980	0:00:00	-	-	Nitrate, as N	0.451	mg/L
79255	14/03/1980	0:00:00	-	-	Sulphate, as SO4	204	mg/L
79255	14/03/1980	0:00:00	-	-	DME Silicate, as SIO3	20	mg/L
79255	14/03/1980	0:00:00	-	-	Magnesium, as Mg	509	mg/L
79255	14/03/1980	0:00:00	-	-	Total Soluble Salts (Summation	5840	mg/L
79256	14/03/1980	0:00:00	61	97	Conductivity (µS/cm)	8350	µS/cm @ 25°C
79256	14/03/1980	0:00:00	61	97	Calcium, as Ca	38	mg/L
79256	14/03/1980	0:00:00	61	97	Chloride, as Cl	2420	mg/L
79256	14/03/1980	0:00:00	61	97	Carbonate, as CO3	47	mg/L
79256	14/03/1980	0:00:00	61	97	Hardness, as CaCO3 (calc.)	1474	mg/L
79256	14/03/1980	0:00:00	61	97	Bicarbonate, as HCO3	655	mg/L
79256	14/03/1980	0:00:00	61	97	Potassium, as K	18	mg/L
79256	14/03/1980	0:00:00	61	97	Sodium, as Na	1319	mg/L
79256	14/03/1980	0:00:00	61	97	Nitrate, as N	0.451	mg/L
79256	14/03/1980	0:00:00	61	97	Sulphate, as SO4	343	mg/L
79256	14/03/1980	0:00:00	61	97	DME Silicate, as SIO3	12	mg/L
79256	14/03/1980	0:00:00	61	97	Iron, total as Fe	2	mg/L
79256	14/03/1980	0:00:00	61	97	Magnesium, as Mg	335	mg/L
79256	14/03/1980	0:00:00	61	97	Total Soluble Salts (Summation	5189	mg/L
79257	24/08/1980	0:00:00	78	84	Conductivity (µS/cm)	4340	µS/cm @ 25°C
79257	24/08/1980	0:00:00	78	84	Calcium, as Ca	36	mg/L
79257	24/08/1980	0:00:00	78	84	Chloride, as Cl	1074	mg/L
79257	24/08/1980	0:00:00	78	84	Carbonate, as CO3	26	mg/L
79257	24/08/1980	0:00:00	78	84	Hardness, as CaCO3 (calc.)	769	mg/L
79257	24/08/1980	0:00:00	78	84	Bicarbonate, as HCO3	542	mg/L
79257	24/08/1980	0:00:00	78	84	Potassium, as K	22	mg/L
79257	24/08/1980	0:00:00	78	84	Sodium, as Na	656	mg/L
79257	24/08/1980	0:00:00	78	84	Nitrate, as N	0.451	mg/L
79257	24/08/1980	0:00:00	78	84	Sulphate, as SO4	238	mg/L
79257	24/08/1980	0:00:00	78	84	DME Silicate, as SIO3	12	mg/L

D ID	Reading	Reading	Interval	Interval to	B	Parameter	Unit of
Bore ID 79257	date 24/08/1980	time 0:00:00	from (m) 78	(m) 84	Parameter name Iron, total as Fe	value 2	measure mg/L
79257	24/08/1980	0:00:00	78	84	Magnesium, as Mg	165	mg/L
79257	24/08/1980	0:00:00	78	84	Total Soluble Salts (Summation	2773	mg/L
79257	20/10/1980	0:00:00	78	84	Conductivity (µS/cm)	4240	µS/cm @ 25°C
79257	20/10/1980	0:00:00	78	84	Calcium, as Ca	18	mg/L
79257	20/10/1980	0:00:00	78	84	Chloride, as Cl	1051	mg/L
79257	20/10/1980	0:00:00	78	84	Hardness, as CaCO3 (calc.)	877	mg/L
79257	20/10/1980	0:00:00	78	84	Bicarbonate, as HCO3	833	mg/L
79257	20/10/1980	0:00:00	78	84	Potassium, as K	17	mg/L
79257	20/10/1980	0:00:00	78	84	Sodium, as Na	603	mg/L
79257	20/10/1980	0:00:00	78	84	Nitrate, as N	1.354	mg/L
79257	20/10/1980	0:00:00	78	84	Sulphate, as SO4	71	mg/L
79257	20/10/1980	0:00:00	78	84	DME Silicate, as SIO3	34	mg/L
79257	20/10/1980	0:00:00	78	84	Iron, total as Fe	1	mg/L
79257	20/10/1980	0:00:00	78	84	Magnesium, as Mg	202	mg/L
79257	20/10/1980	0:00:00	78	84	Total Soluble Salts (Summation	2835	mg/L
79257	23/10/1980	0:00:00	78	84	Hardness, as CaCO3 (calc.)	816	mg/L
79257	23/10/1980	0:00:00	78	84	Total Soluble Salts (Conductiv	2600	mg/L
79268	5/04/1990	0:00:00	87	93	Conductivity (µS/cm)	4800	µS/cm @ 25°C
79268	5/04/1990	0:00:00	87	93	Total Alkalinity, as CaCO3	510	mg/L
79268	5/04/1990	0:00:00	87	93	Calcium, as Ca	48	mg/L
79268	5/04/1990	0:00:00	87	93	Chloride, as Cl	1200	mg/L
79268	5/04/1990	0:00:00	87	93	Hardness, as CaCO3	951.856	mg/L
79268	5/04/1990	0:00:00	87	93	Bicarbonate, as HCO3	621.951	mg/L
79268	5/04/1990	0:00:00	87	93	Potassium, as K	16	mg/L
79268	5/04/1990	0:00:00	87	93	Sodium, as Na	720	mg/L
79268	5/04/1990	0:00:00	87	93	Nitrate & Nitrite, as N(0.15de	0.15	mg/L
79268	5/04/1990	0:00:00	87	93	Silica, total as SiO2	21	mg/L
79268	5/04/1990	0:00:00	87	93	Sulphate, as SO4	260	mg/L
79268	5/04/1990	0:00:00	87	93	Iron (Undigested), as Fe	1	mg/L
79268	5/04/1990	0:00:00	87 87	93 93	Magnesium, as Mg	200	mg/L
79268 120765	5/04/1990	0:00:00	87	93	Total Dissolved Solids, 105C	2806.2 2900	mg/L µS/cm @ 25°C
120765	20/12/1993 20/12/1993	0:00:00	82	94 94	Conductivity (µS/cm) Calcium, as Ca	2900	mg/L
120765	20/12/1993	0:00:00	82	94	Hardness, as CaCO3 (calc.)	432	mg/L
120765	20/12/1993	0:00:00	82	94	Sodium, as Na	450	mg/L
120765	20/12/1993	0:00:00	82	94	Nitrate & Nitrite, as N(0.15de	0.15	mg/L
120765	20/12/1993	0:00:00	82	94	Iron (Undigested), as Fe	5	mg/L
120765	20/12/1993	0:00:00	82	94	Magnesium, as Mg	90	mg/L
116348	1/09/1993	0:00:00	100	106	Conductivity (µS/cm)	4900	µS/cm @ 25°C
116348	1/09/1993	0:00:00	100	106	Total Alkalinity, as CaCO3	510	mg/L
116348	1/09/1993	0:00:00	100	106	Calcium, as Ca	28	mg/L
116348	1/09/1993	0:00:00	100	106	Chloride, as Cl	1300	mg/L
116348	1/09/1993	0:00:00	100	106	Hardness, as CaCO3 (calc.)	860	mg/L
116348	1/09/1993	0:00:00	100	106	Potassium, as K	30	mg/L
116348	1/09/1993	0:00:00	100	106	Sodium, as Na	740	mg/L
116348	1/09/1993	0:00:00	100	106	Nitrate & Nitrite, as N(0.15de	0.05	mg/L
116348	1/09/1993	0:00:00	100	106	Sulphate, as SO4	220	mg/L
116348	1/09/1993	0:00:00	100	106	Iron (Undigested), as Fe	0.69	mg/L
116348	1/09/1993	0:00:00	100	106	Magnesium, as Mg	190	mg/L
116348	1/09/1993	0:00:00	100	106	Total Soluble Salts (Summation	3130	mg/L
116348	1/09/1993	1:00:00	100	106	Conductivity (µS/cm)	4900	µS/cm @ 25°C
116348	1/09/1993	1:00:00	100	106	Total Alkalinity, as CaCO3	510	mg/L
116348	1/09/1993	1:00:00	100	106	Calcium, as Ca	28	mg/L
116348	1/09/1993	1:00:00	100	106	Chloride, as Cl	1300	mg/L
116348	1/09/1993	1:00:00	100	106	Hardness, as CaCO3 (calc.)	860	mg/L
116348	1/09/1993	1:00:00	100	106	Potassium, as K	30	mg/L
116348	1/09/1993	1:00:00	100	106	Sodium, as Na	740	mg/L
116348	1/09/1993	1:00:00	100	106	Nitrate & Nitrite, as N(0.15de	0.05	mg/L
116348	1/09/1993	1:00:00	100	106	Sulphate, as SO4	220	mg/L
116348	1/09/1993	1:00:00	100	106	Iron (Undigested), as Fe	0.69	mg/L
116348	1/09/1993	1:00:00	100	106	Magnesium, as Mg	190	mg/L
116348	1/09/1993	1:00:00	100	106	Total Soluble Salts (Summation	3130	mg/L
79264	4/03/1987	0:00:00	18	24	Conductivity (µS/cm)	6300	µS/cm @ 25°C
79264	4/03/1987	0:00:00	18	24	Total Alkalinity, as CaCO3	180	mg/L
79264	4/03/1987	0:00:00	18	24	Calcium, as Ca	67	mg/L
79264	4/03/1987	0:00:00	18	24	Chloride, as Cl	2000	mg/L
79264	4/03/1987	0:00:00	18	24	Hardness, as CaCO3	1332.099	mg/L
79264	4/03/1987	0:00:00	18	24	Bicarbonate, as HCO3	219.512	mg/L
79264	4/03/1987	0:00:00	18	24	Potassium, as K	9.4	mg/L
	4/03/1987	0:00:00	18	24	Sodium, as Na	860	mg/L
	4/03/1987	0:00:00	18	24	Nitrate + Nitrite, as N(0.003d Silica, total as SiO2	0.15 39	mg/L
79264		0 0 0 7 7			INJUGA TOTAL AS SIL12	1.20	
79264 79264	4/03/1987	0:00:00	18	24			mg/L
79264 79264 79264	4/03/1987 4/03/1987	0:00:00	18	24	Sulphate, as SO4	100	mg/L
79264 79264 79264 79264 79264 79264	4/03/1987						

	Reading	Reading	Interval	Interval to		Parameter	Unit of
Bore ID	date	time	from (m)	(m)	Parameter name	value	measure
52428	1899-12-30	0:00:00	30	36	Conductivity (µS/cm)	5100	µS/cm @ 25°C
52428 52428	1899-12-30 1899-12-30	0:00:00	30 30	36 36	Calcium, as Ca Chloride, as Cl	15 1300	mg/L mg/L
52428 52428	1899-12-30	0:00:00	30	36	Carbonate, as CO3	7	mg/L
52428	1899-12-30	0:00:00	30	36	Hardness, as CaCO3 (calc.)	703	mg/L
52428	1899-12-30	0:00:00	30	36	Potassium, as K	10	mg/L
52428	1899-12-30	0:00:00	30	36	Sodium, as Na	840	mg/L
52428	1899-12-30	0:00:00	30	36	Nitrate, as N	1.129	mg/L
52428	1899-12-30	0:00:00	30	36	Sulphate, as SO4	91	mg/L
52428	1899-12-30	0:00:00	30	36	DME Silicate, as SIO3	55	mg/L
52428	1899-12-30	0:00:00	30	36	Magnesium, as Mg	160	mg/L
52428	1899-12-30	0:00:00	30	36	Total Soluble Salts (Summation	3245	mg/L
79266	1899-12-30	0:00:00	66	93	Conductivity (µS/cm)	8900	µS/cm @ 25°C
79266 79266	1899-12-30 1899-12-30	0:00:00	66 66	93 93	Calcium, as Ca Chloride, as Cl	54 2600	mg/L mg/L
79266	1899-12-30	0:00:00	66	93	Hardness, as CaCO3 (calc.)	1549	mg/L
79266	1899-12-30	0:00:00	66	93	Potassium, as K	21	mg/L
79266	1899-12-30	0:00:00	66	93	Sodium, as Na	1400	mg/L
79266	1899-12-30	0:00:00	66	93	Sulphate, as SO4	290	mg/L
79266	1899-12-30	0:00:00	66	93	DME Silicate, as SIO3	20	mg/L
79266	1899-12-30	0:00:00	66	93	Iron, total as Fe	29	mg/L
79266	1899-12-30	0:00:00	66	93	Magnesium, as Mg	340	mg/L
79266	1899-12-30	0:00:00	66	93	Total Soluble Salts (Summation	5498	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Conductivity (µS/cm)	13810	µS/cm @ 25°C
52418 52418	19/09/1974 19/09/1974	0:00:00	35.36 35.36	42.36 42.36	Calcium, as Ca Chloride, as Cl	65 4523	mg/L
52418 52418	19/09/1974	0:00:00	35.36	42.36	Chloride, as Cl Carbonate, as CO3	4523 50	mg/L mg/L
52418 52418	19/09/1974	0:00:00	35.36	42.36	Hardness, as CaCO3 (calc.)	1806	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Bicarbonate, as HCO3	699	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Potassium, as K	96	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Sodium, as Na	2520	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Nitrate, as N	4.289	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Sulphate, as SO4	451	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	DME Silicate, as SIO3	18	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Iron, total as Fe	4.5	mg/L
52418	19/09/1974	0:00:00	35.36	42.36	Magnesium, as Mg	399	mg/L
52418	19/09/1974 26/02/1983	0:00:00	35.36 114	42.36 119	Total Soluble Salts (Summation Conductivity (µS/cm)	8840 9200	mg/L µS/cm @ 25°C
79259 79259	26/02/1983	0:00:00	114	119	Total Alkalinity, as CaCO3	360	mg/L
79259	26/02/1983	0:00:00	114	119	Calcium, as Ca	70	mg/L
79259	26/02/1983	0:00:00	114	119	Chloride, as Cl	2700	mg/L
79259	26/02/1983	0:00:00	114	119	Hardness, as CaCO3	1422.79	mg/L
79259	26/02/1983	0:00:00	114	119	Bicarbonate, as HCO3	439.024	mg/L
79259	26/02/1983	0:00:00	114	119	Potassium, as K	22	mg/L
79259	26/02/1983	0:00:00	114	119	Sodium, as Na	1600	mg/L
79259	26/02/1983	0:00:00	114	119	Nitrate + Nitrite, as N(0.003d	0.2	mg/L
79259	26/02/1983	0:00:00	114	119	Silica, reactive as SiO2	17	mg/L
79259	26/02/1983	0:00:00	114	119	Sulphate, as SO4	660	mg/L
79259 79259	26/02/1983	0:00:00	114 114	119 119	Iron, total as Fe Magnesium, as Mg	1.73 300	mg/L
79259	26/02/1983 26/02/1983	0:00:00	114	119	Total Dissolved Solids, 105C	5132.086	mg/L mg/L
109453	1899-12-30	0:00:00	50	54	Conductivity (µS/cm)	4400	μS/cm @ 25°C
109453	1899-12-30	0:00:00	50	54	Calcium, as Ca	28	mg/L
109453	1899-12-30	0:00:00	50	54	Chloride, as Cl	1100	mg/L
109453	1899-12-30	0:00:00	50	54	Hardness, as CaCO3 (calc.)	777	mg/L
109453	1899-12-30	0:00:00	50	54	Potassium, as K	8	mg/L
109453	1899-12-30	0:00:00	50	54	Sodium, as Na	660	mg/L
109453	1899-12-30	0:00:00	50	54	Sulphate, as SO4	140	mg/L
109453	1899-12-30	0:00:00	50	54	DME Silicate, as SIO3	34	mg/L
109453	1899-12-30	0:00:00	50	54	Iron, total as Fe	16	mg/L
109453 109453	1899-12-30	0:00:00	50 50	54 54	Magnesium, as Mg Total Soluble Salts (Summation	170 2606	mg/L mg/L
52415	1899-12-30 16/08/1971	0:00:00	50 48.76	54 51.81	Conductivity (µS/cm)	7737	mg/L μS/cm @ 25°0
52415 52415	16/08/1971	0:00:00	48.76	51.81	Calcium, as Ca	61	mg/L
52415 52415	16/08/1971	0:00:00	48.76	51.81	Chloride, as Cl	2240	mg/L
52415	16/08/1971	0:00:00	48.76	51.81	Hardness, as CaCO3 (calc.)	1003	mg/L
52415	16/08/1971	0:00:00	48.76	51.81	Bicarbonate, as HCO3	628	mg/L
52415	16/08/1971	0:00:00	48.76	51.81	Magnesium, as Mg	207	mg/L
52415	16/08/1971	0:00:00	48.76	51.81	Total Soluble Salts (Conductiv	4668	mg/L
52415	16/08/1971	1:00:00	48.76	51.81	Conductivity (µS/cm)	7737	µS/cm @ 25°0
52415	16/08/1971	1:00:00	48.76	51.81	Calcium, as Ca	58	mg/L
52415	16/08/1971	1:00:00	48.76	51.81	Chloride, as Cl	2182	mg/L
52415	16/08/1971	1:00:00	48.76	51.81	Hardness, as CaCO3 (calc.)	982	mg/L
52415 52415	16/08/1971	1:00:00	48.76	51.81	Bicarbonate, as HCO3	629	mg/L mg/L
	16/08/1971	1:00:00	48.76	51.81	Magnesium, as Mg	203	Ima/I

	Reading	Reading	Interval	Interval to		Parameter	Unit of
Bore ID	date	time	from (m)	(m)	Parameter name	value	measure
79265	29/05/1976	0:00:00	32	42.67	Conductivity (µS/cm)	10730	µS/cm @ 25°C
79265	29/05/1976	0:00:00	32	42.67	Calcium, as Ca	30	mg/L
79265	29/05/1976	0:00:00	32	42.67	Chloride, as Cl	3100	mg/L
79265	29/05/1976	0:00:00	32	42.67	Hardness, as CaCO3 (calc.)	1808	mg/L
79265	29/05/1976	0:00:00	32	42.67	Bicarbonate, as HCO3	1479	mg/L
79265	29/05/1976	0:00:00	32	42.67	Potassium, as K	38	mg/L
79265	29/05/1976	0:00:00	32	42.67	Sodium, as Na	1796	mg/L
79265	29/05/1976	0:00:00	32	42.67	Sulphate, as SO4	138	mg/L
79265	29/05/1976	0:00:00	32	42.67	DME Silicate, as SIO3	50	mg/L
79265	29/05/1976	0:00:00	32	42.67	Iron, total as Fe	3	mg/L
79265	29/05/1976	0:00:00	32	42.67	Magnesium, as Mg	421	mg/L
79265	29/05/1976	0:00:00	32	42.67	Total Soluble Salts (Summation	7052	mg/L
109432	19/05/1975	0:00:00	20	39.5	Conductivity (µS/cm)	11799	µS/cm @ 25°C
109432	19/05/1975	0:00:00	20	39.5	Calcium, as Ca	83	mg/L
109432	19/05/1975	0:00:00	20	39.5	Chloride, as Cl	3552	mg/L
109432	19/05/1975	0:00:00	20	39.5	Hardness, as CaCO3 (calc.)	1561	mg/L
109432	19/05/1975	0:00:00	20	39.5	Bicarbonate, as HCO3	1022	mg/L
109432	19/05/1975	0:00:00	20	39.5	Potassium, as K	23	mg/L
109432	19/05/1975	0:00:00	20	39.5	Sodium, as Na	2125	mg/L
109432	19/05/1975	0:00:00	20	39.5	Sulphate, as SO4	393	mg/L
109432	19/05/1975	0:00:00	20	39.5	DME Silicate, as SIO3	45	mg/L
109432	19/05/1975	0:00:00	20	39.5	Iron, total as Fe	2	mg/L
109432	19/05/1975	0:00:00	20	39.5	Magnesium, as Mg	329	mg/L
109432	19/05/1975	0:00:00	20	39.5	Total Soluble Salts (Summation	7572	mg/L

Table 6 Location: Craigieburn West PSP Visualising Victoria's Groundwater Search **Field Chemistry**

	_				
Bore ID	Date	Time	Interval from	Interval to	рН
109442	29/04/1981	0:00:00	30	39	8.3
109450	22/04/1989	0:00:00	96	120	7.9
109429	1/11/1971	0:00:00	30.48	62.48	6.5
109429	29/08/1972	0:00:00	30.48	62.48	8.3
109440	26/09/1980	0:00:00	31	82	8
109428	13/12/1971	0:00:00	40.8	41.8	8.27
109443	9/04/1981	0:00:00	42	48	8.3
109443	9/04/1981	1:00:00	42	48	8.3
109437	26/06/1978	0:00:00	62	66	8.01
109437	15/11/1978	0:00:00	62	66	8.13
79250	17/10/1977	0:00:00	-	-	8.11
109434	16/06/1976	0:00:00	44.19	54.25	7.97
109422	4/04/1975	0:00:00	-	-	8.29
109449	10/02/1988	0:00:00	70	77	8.2
79252	9/02/1974	0:00:00	27.43	32.61	9
79255	14/03/1980	0:00:00	-	-	8
79256	14/03/1980	0:00:00	61	97	8.2
79257	24/08/1980	0:00:00	78	84	8.3
79257	20/10/1980	0:00:00	78	84	8
79257	23/10/1980	0:00:00	78	84	7.4
79268	5/04/1990	0:00:00	87	93	8.5
120765	20/12/1993	0:00:00	82	94	8.6
116348	1/09/1993	0:00:00	100	106	8.3
116348	1/09/1993	1:00:00	100	106	8.3
79264	4/03/1987	0:00:00	18	24	8
52428	1899-12-30	0:00:00	30	36	8.3
79266	1899-12-30	0:00:00	66	93	8.4
52418	19/09/1974	0:00:00	35.36	42.36	8.19
79259	26/02/1983	0:00:00	114	119	8
109453	1899-12-30	0:00:00	50	54	8.6
52415	16/08/1971	0:00:00	48.76	51.81	7.73
52415	16/08/1971	1:00:00	48.76	51.81	7.65
79265	29/05/1976	0:00:00	32	42.67	7.63
109432	19/05/1975	0:00:00	20	39.5	7.83

Bore ID	Start date	Time	Interval from (m			Draw down (r	Pumping	Recovery	. ,	EC (uS/cm)	Pump leve		Final l		HGU name (fo
	3/07/1989	14:00:00			AIR	-	-	-	3.7	-	-	FALSE	-	89	SRW
	29/04/1981	14:00:00			AIR	-	-	-	1.3	-	-	TRUE	-	89	SRW
109450	22/04/1989	14:00:00			AIR	-	-	-	0.51	-	-	FALSE	-	89	SRW
109445	1/03/1983	14:00:00			AIR	36	-	-	1.2	-	-	FALSE	-	89	SRW
109429	30/10/1971	13:00:00	30.48		BAL	-	180	80	-	-	47.24	FALSE	16.15	89	SRW
109429	30/10/1971	14:00:00	30.48	62.48	BAL	31.39	-	-	0.38	-	-	FALSE	-	89	SRW
109441	10/10/1980	14:00:00	80	93	AIR	-	-	-	1.2	-	-	TRUE	-	89	SRW
109440	4/08/1980	14:00:00	31	82	AIR	72	-	-	1	-	-	TRUE	-	89	SRW
WRK032473	31/01/1995	14:00:00	41	166	AIR	-	-	-	5	-	-	FALSE	-	89	SRW
109428	4/11/1971	14:00:00	40.8	41.8	BAL	0.6	-	-	0.19	-	-	FALSE	-	89	SRW
79261	5/08/1982	14:00:00	24	60	AIR	-	-	-	0.25	-	-	FALSE	-	89	SRW
WRK988836	26/01/2009	13:00:00	-	-	NKN	-	-	-	-	-	-	FALSE	30	89	SRW
WRK988836	26/01/2009	14:00:00	-	-	AIR	-	30	1	-	4000	-	FALSE	-	89	SRW
109436	7/02/1977	14:00:00	18	32.91	NKN	-	-	-	3.79	-	-	FALSE	-	89	SRW
	9/04/1981	14:00:00			AIR	12	-	-	0.06	-	-	FALSE	-	89	SRW
	11/12/1999	14:00:00	78		AIR	-	-	-	0.5	-	-	FALSE	-	89	SRW
	31/05/1985	14:00:00			AIR	-	-	-	1.26	-	-	FALSE	-	89	SRW
	26/06/1978	14:00:00		66	PUM	-	-	-	10.07	-	-	TRUE	-	89	SRW
	20/02/1999	14:00:00			AIR	-	-	-	0.88	-	-	TRUE	-	89	SRW
	9/09/1999	14:00:00			AIR	-	-	-	1	-	-	FALSE	-	89	SRW
	31/05/1976	14:00:00		54.25	NKN	-	-	-	0.19	-	-	FALSE	-	89	SRW
	21/05/1962	14:00:00		44.5	NKN	-	-	-	-	-	-	FALSE	-	0	(unknown)
109430	30/07/1973	14:00:00			PUM	-	-	-	1.26	-	-	FALSE	-	89	SRW
109449	10/02/1988	14:00:00			AIR	-	-	-	0.88	-	-	FALSE	-	89	SRW
	9/02/1974	14:00:00			NKN	-	-	-	0.32	-	-	FALSE	-	89	SRW
	24/01/2000	14:00:00	-		AIR	-	45	-	0.51	-	-	FALSE	-	89	SRW
79255	1/02/1980	14:00:00			BAL	-	-	-	0.05	-	-	TRUE	-	89	SRW
79260	1/06/1982	14:00:00			AIR	-	-	-	3	-	-	FALSE	-	89	SRW
79256	2/07/1982	14:00:00			BAL	-	-	-	0.11	-	-	FALSE	-	89	SRW
	11/05/2003	13:00:00	-	-	AIR	-	60	15	3.6	-	51.5	FALSE	-	89	SRW
WRK979358		13:00:00		-	NKN	-	-	-	-	-	-	FALSE	23.2	89	SRW
WRK979358		14:00:00		-	AIR	-	30	30	-	-	-	FALSE	-	89	SRW
79257	14/09/1980	14:00:00			AIR	25	-	-	1.3	-	1_	TRUE	-	89	SRW
	5/04/1990	14:00:00		93	NKN	-	-	t	1.0	-	1_	FALSE	-	89	SRW

Bore ID	Start date	Time	Interval from (m)	Interval to (r	Extraction m	Draw down (n	Pumping t	Recovery	Yield (L/s)	EC (uS/cm)	Pump leve	Water san	Final I	HGU Code	HGU name (fo
WRK977450	16/02/2007	13:00:00	-]- _	NKN	-	-	-	-	-	-	FALSE	34.3	89	SRW
WRK977450	16/02/2007	14:00:00	-	-	AIR	-	30	60	-	-	-	FALSE	-	89	SRW
120765	19/12/1993	0:00:00	82	94	NKN	-	-	-	-	-	-	TRUE	-	90	GMW
120765	19/12/1993	14:00:00	82	94	AIR	95	600	-	0.38	-	-	TRUE	-	90	GMW
116348	31/08/1993	14:00:00	100	106	AIR	-	-	-	0.38	-	-	TRUE	-	89	SRW
79264	4/03/1987	14:00:00	18	24	AIR	-	-	-	0.63	-	-	FALSE	-	89	SRW
WRK985085	21/02/2008	14:00:00	-	-	NKN	-	120	20	-	-	-	FALSE	-	89	SRW
52428	18/10/1989	14:00:00		36	AIR	-	-	-	0.25	-	-	FALSE	-	89	SRW
79266	8/12/1988	14:00:00	66	93	AIR	-	-	-	0.51	-	-	FALSE	-	89	SRW
WRK962170	14/08/2003	0:00:00	-	-	-	-	-	-	-	-	-	FALSE	-	89	SRW
52418	13/09/1974	14:00:00	35.36	42.36	AIR	12.49	1320	-	0.15	-	-	FALSE	-	89	SRW
WRK966931	20/09/2004	14:00:00	70	90.5	AIR	-	30	10	0.5	-	-	FALSE	-	89	SRW
79259	24/02/1983	14:00:00	114	119	AIR	57	-	-	0.9	-	-	FALSE	-	89	SRW
79254	1/12/1975	14:00:00		55	BAL	18	120	-	0.25	-	-	FALSE	-	89	SRW
109453	17/01/1989	14:00:00	50	54	AIR	-	-	-	0.76	-	-	FALSE	-	89	SRW
WRK991291	4/06/2009	13:00:00	-	-	NKN	-	-	-	-	-	-	FALSE	41	90	GMW
WRK991291	4/06/2009	14:00:00	-	-	AIR	-		20	-	0	-	FALSE	-	90	GMW
WRK964250	10/02/2004	14:00:00	66	80	AIR	-	10	20	0.4	-	-	FALSE	24.8	89	SRW
79258	23/10/1982	14:00:00	56	58	AIR	12	-	-	0.76	-	-	FALSE	-	89	SRW
79263	6/08/1982	14:00:00	27	74.67	AIR	-	-	-	1.9	-	-	FALSE	-	89	SRW
WRK960778	19/01/2003	14:00:00	57	63	AIR	-	10	15	0.3	-	-	FALSE	-	89	SRW
134012	11/03/1998	14:00:00	31.6	37.6	NKN	-	-	-	-	-	-	FALSE	-	89	SRW
52415	7/08/1971	14:00:00	48.76	51.81	NKN	4.87	-	-	1.14	-	-	FALSE	-	89	SRW
WRK032833	10/03/1999	14:00:00	23	31	AIR	-	-	-	0.38	-	-	FALSE	-	89	SRW
79265	10/05/1976	14:00:00	32	42.67	NKN	-	-	-	0.06	-	-	FALSE	-	89	SRW
134010	10/03/1998	14:00:00	30.3	36.3	NKN	-	-	-	-	-	-	FALSE	-	89	SRW
134011	11/03/1998	14:00:00	28.8	34.8	AIR	-	-	-	0.06	-	-	FALSE	-	89	SRW

Bore ID		Reading	Depth to water (
WRK957997	15/11/2004	0:00:00	10.69
WRK957993	11/11/2004	0:00:00	14.9

APPENDIX D **BOREHOLE LOGS**

	1	3			Beveridge	Williams			BH	0	1		
					1 Glenferrie Road, Malvern VIC 31 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	44		So	il Bore			P	PAGE 1 OF 1
С	lien	t:	-		an Planning Authority				Project number:			1801	684
	roje				geological and Acid Sulphate	e Soil Assessment			Logged/prepared	l by:			YES/S.TOMKINSO
		tion:		aigie	burn West Precinct				Checked by:			A.HA	YES
		starte	ed:		12/12/2018	Date completed: 12/12	2/2018		Borehole depth (-		1.3	
)rille		uinm	onti	Strata Drilling Pty Ltd Solid Auger				Borehole diamete	er (n	nm):	100	
				ent:	Solid Auger							c	
Method	Water	Depth (m)	Graphic Log		Material D	escription		Obs	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
		_		ML odd	 clayey SILT; low plasticity our; 	; greyish brown; firm; dry;	no NA	ATURAL 1	TOPSOIL	D			BH01/0.0-0.1 BH01/0.0-0.1A 181212-S-D01 pH: 6.09
				СН	- silty CLAY; high plasticity;	brown; stiff; moist; no odd	our NA	ATURAL		м			pH: 6.09 EC: 0.14
		-											-
er	rved	0.5											
Solid Auger	None observed												_
Sol	None	_											_
		-	H										-
		_1.0	K//										
				Fro	om 1.1m: Soil getting firmer								
			11										BH01/1.2-1.3 pH: 7.65 EC: 0.45
		-		End Au	d of borehole at 1.3 m ger refused at 1.3m								
		_1.5											
		-											_
		_											_
		<u>2</u> .0											
		-											_
		$\left - \right $											-
		_2.5											
		\vdash											-
		L											_
		<u>3</u> .0											-
		\vdash											-
													_
		3.5											_
		-											-
		-											-
Ĺ		4.0											

Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18

	1	\mathbf{R}		Beveridge Williams development & environment consultants		BH	0	2		
			-	1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	So	il Bore			Ρ	PAGE 1 OF 1
	Clien	it:	Victo	orian Planning Authority		Project number:			1801	684
F	Proje	ect:	-	lrogeological and Acid Sulphate Soil Assessment		Logged/prepared	d by:		A.HA	YES/S.TOMKINSON
	.oca	tion:	Crai	gieburn West Precinct		Checked by:			A.HA	YES
		starte	ed:		2/2018	Borehole depth			2.0	
	Drille			Strata Drilling Pty Ltd		Borehole diamet	er (n	nm):	100	
	Drilli	ng eq		nt: Solid Auger			<u> </u>			
Method	Water	Depth (m)	Graphic Log	Material Description	Ot	oservations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML - clayey SILT; low plasticity; greyish brown; firm; dry;	no NATURAL	TOPSOIL	D			BH02/0.0-0.1 ph: 7.43
Solid Auger	None observed	0.5 1.0 1.5 1.5 		CH - silty CLAY; high plasticity; brown; stiff; moist; no odd CH - silty CLAY; high plasticity; olive brown; firm; moist; r odour End of borehole at 2.0 m Auger refused at 2.0m	NATURAL		M			ph: 7.43 EC: 0.24 BH02/1.9-2.0 pH: 7.24 EC: 0.88
		- _ <u>3</u> .5 - _ _ _ 								

Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRAUIA.GDT Created: 19/12/18

	1	3		Beveridge Williams development & environment consultants		BH	0	3		
				1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Sc	oil Bore			F	PAGE 1 OF 1
0	lien	t:	Vict	orian Planning Authority		Project number:			1801	684
P	roje	ect:	Hyd	lrogeological and Acid Sulphate Soil Assessment		Logged/prepared	d by:		A.HA	YES/S.TOMKINSON
	oca	tion:	Crai	igieburn West Precinct		Checked by:			A.HA	YES
		starte	ed:		2/2018	Borehole depth			2.4	
)rille			Strata Drilling Pty Ltd		Borehole diamet	er (n	nm):	100	
) 	ng eq		nt: Solid Auger					-	
Method	Water	Depth (m)	Graphic Log	Material Description	0	oservations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML - clayey SILT; low plasticity; greyish brown; firm; dry; odour;	no NATURAL	TOPSOIL	D			BH03/0.0-0.1 pH: 6.02 ∖EC: 0.18
		_		CH - silty CLAT; high plasticity; brown; stiff; moist; no odd	ur NATURAL		м			<u> </u>
		_	HH							_
		-	НH							_
		_0.5								
		_								_
		_								_
		-	H							_
	8	_1.0	HH							
uger	None observed	_		CH - silty CLAY; high plasticity; yellowish brown; firm; mc	ist;					_
Solid Auger	one ob	_		no odour						_
0,	ž	_	H							_
		_1.5	HH							
		-	НH							-
		-								_
		<u>2</u> .0								BH03/1.9-2.0
		_	H							
		-	HH							_
		_								_
		_2.5		End of borehole at 2.4 m Auger refused at 2.4m						
		-								_
		-								_
		-								_
		<u>3</u> .0								
										_
		\mid								_
		-								_
		_ 3.5								-
		-								_
		$\left \right $								_
		4.0								

Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRAUA.GDT Created: 19/12/18

		R		Beveridge Williams		BH	0	4		
	-		÷	1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	Sc	il Bore			Ρ	PAGE 1 OF 1
	Clie	nt:	Victo	orian Planning Authority		Project number:			1801	684
	Pro	ject:	Hydr	ogeological and Acid Sulphate Soil Assessment		Logged/prepared	d by:		A.HA	YES/S.TOMKINSO
	Loc	ation:	Craig	gieburn West Precinct		Checked by:			A.HA	YES
	Dat	e starte	ed:	12/12/2018 Date completed: 12/12/	2018	Borehole depth			2.0	
	Dril	ler:		Strata Drilling Pty Ltd		Borehole diamet	er (n	nm):	100	
	Dril	ling equ	uipmen	it: Solid Auger						
Method	Water	Depth (m)	Graphic Log	Material Description	O	oservations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML - clayey SILT; low plasticity; greyish brown; firm; dry; n	D NATURAL	TOPSOIL	D			BH04/0.0-0.1 pH: 5.92
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18 Solid Auger	None observed			Auger refused at 2.0 m End of borehole at 2.0 m			M			BH04/1.9-2.0 PH: 5.92 EC: 0.24 BH04/1.9-2.0 PH: 6.90 EC: 0.09
Report: ENV BH Project: 180		<u>3</u> .5 - - - 4.0								

	1	2		Beveridge Williams			BH	0	5		
				1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			F	PAGE 1 OF 1
	Clien	it:	Vic	ctorian Planning Authority			Project number:			1801	684
	Proje	ect:	-	drogeological and Acid Sulphate Soil Assessment			Logged/prepared	d by:		A.HA	YES/S.TOMKINSON
	loca	tion:	Cra	aigieburn West Precinct			Checked by:			A.HA	YES
	Date	starte	ed:	12/12/2018 Date completed: 12/1	2/20)18	Borehole depth (0.5	
	Drille	er:		Strata Drilling Pty Ltd			Borehole diamet	er (n	nm):	100	
	Drilli	ng eq	uipme	ent: Solid Auger							
Method	Water	Depth (m)	Graphic Log	Material Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
			M	ML - clayey SILT; low plasticity; greyish brown; firm; dry;	no	NATURAL	TOPSOIL	D			BH05/0.0-0.1 pH: 5.82
ger	erved			odour; CH - silty CLAY; high plasicity; yellowish brown/brown; si	tiff;	NATURAL		м			PH: 5.82
Solid Auger	None observed	_	K	moist; no odour	,						_
So	Non	_	ΗJ								_
\vdash		0.5	UK U	End of borehole at 0.5 m							
		-		Auger refused at 0.5m							_
		-									_
		-									_
		1.0									
		_									_
		_									_
		_									_
		-									_
		_1.5									
/18		-									_
19/12		-									_
ated:											
T Cre		2.0									
IA.GD		_									_
STRAL		-									_
D AU:		-									-
INT SI		2.5									-
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRAUA.GDT Created: 19/12/18		_ <u></u> .,									-
[emp]											
GPJ 7											
T PSP.		-									_
N WES		<u>3</u> .0									_
BURN		-									_
RAIGIE		-									-
84 - CI		F									-
8016											-
ject: 1											
H Pro											
ENV B											_
oort: E		-									_
Rep		4.0									

		R		Beveridge Willian development & environment consulta	NS ants		BH	0	6		
	-			1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			P	PAGE 1 OF 1
	Clie	ent:	Vic	torian Planning Authority			Project number:			1801	684
	Pro	ject:	Ну	drogeological and Acid Sulphate Soil Assessment			Logged/prepared	d by:		A.HA	YES/S.TOMKINSO
	Loc	ation:	Cra	igieburn West Precinct			Checked by:			A.HA	YES
	Dat	e start	ed:	12/12/2018 Date completed:	12/12/2	2018	Borehole depth ((m):		0.3	
	Dril	ler:		Strata Drilling Pty Ltd			Borehole diamet	er (n	nm):	100	
	Dril	ling eq	uipme	ent: Solid Auger							
Method	Water	Depth (m)	Graphic Log	Material Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
ger	Prved			ML - clayey SILT; low plasticity; greyish brown; fin odour;	rm; dry; no	NATURAL	TOPSOIL	D			BH06/0.0-0.1 pH: 5.79
Solid Auger	Jone ohserved		K	CH - silty CLAY: high plasticity: vellowish brown a	and brown;			м			PH: 5.79
Sol			ШĮ	stiff; moist; no odour							
		-		End of borehole at 0.3 m Auger refused at 0.3m							_
		_0.5									
		-									_
		-									_
		-									_
		1.0									_
											_
		_									_
		-									_
		-									_
		_1.5									
/18		-									_
19/12		-									_
ated: :											_
Crei		2.0									
A.GD1											_
TRAL		-									
D AUS		\vdash									_
NT STI		-									-
te: Gll		_2.5									-
empla		F									-
JT LAG		Ľ									-
- PSP.(
WEST		3.0									
BURN		F									_
AIGIEI		-									_
4 - CR		\vdash									-
30168		- 2 E									-
ect: 18		<u>3</u> .5									
Proje		F									-
VV BH											
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18											
Rep		4.0									

ſ	1	R			Beveridge Williams development & environment consultants			BH	0	7		
	-				1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			P	PAGE 1 OF 1
	Clier	nt:	Vio	ctori	an Planning Authority			Project number:			1801	684
	Proj	ect:	Ну	dro	geological and Acid Sulphate Soil Assessment			Logged/prepared	d by:		A.HA	YES/S.TOMKINSON
	Loca	tion:	Cra	aigie	burn West Precinct			Checked by:			A.HA	YES
		e starte	ed:		12/12/2018 Date completed: 12/12	2/201	.8	Borehole depth (1.8	
	Drill				Strata Drilling Pty Ltd			Borehole diamet	er (n	nm):	100	
	Drill	ing eq	1	ent:	Solid Auger				<u> </u>		1	
Method	Water	Depth (m)	Graphic Log		Material Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
			Ш	M	clayey SILT; low plasticity; greyish brown; firm; dry;	no	NATURAL ⁻	TOPSOIL	D			BH07/0.0-0.1
				N	our; - silty CLAY; high plasticity; brown; stiff; moist; no odc	our	NATURAL		м			pH: 6.61 EC: 0.05
		_	H									_
		_	H									_
		_0.5	HH									
		-	K//	1								_
	ed	-]								_
Solid Auger	None observed			CH	 silty CLAY; high plasticity; yellowish brown and brow ff; moist; no odour 	/n;						_
Solid	o ano	_1.0	H									
	Z	-	H									_
		-	HH									_
		-	KH	1								_
		1.5]								_
					 - clayey SILT; low plasticity; yellowish brown; firm; bist; no odour 							
/12/18		_	H	1								BH07/1.7-1.8
ed: 19,				Fn	d of borehole at 1.8 m	_					-	pH: 7.86 EC: 0.15
Create		_ 		Au	ger refused at 1.8m on inferred siltstone							
.GDT		_2.0										
RALIA												_
AUST		_										_
IT STD		-										_
te: GIN		_2.5										
emplat		+										_
GPJ T(t I										-
r psp.(
WESI		<u>3</u> .0										_
BURN		-										_
RAIGIE		+										-
84 - CF		+										-
18016		_ 3.5										-
oject: 1												
tH Prc												
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18		-										-
sport:		-										-
Ä		4.0	I								1	

		R		Beveridge Williams			BH	0	8		
	1			1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			P	PAGE 1 OF 1
	Clie	ent:	Vic	ctorian Planning Authority			Project number:			1801	684
	Pro	ject:	Hy	drogeological and Acid Sulphate Soil Assessment			Logged/prepared	d by:		A.HA	YES/S.TOMKINSO
	Loc	ation:	Cra	aigieburn West Precinct			Checked by:			A.HA	YES
	Dat	e start	ed:	12/12/2018 Date completed: 12/1	2/20	18	Borehole depth ((m):		0.5	
	Dri	ller:		Strata Drilling Pty Ltd			Borehole diamet	er (n	nm):	100	
	Dri	lling eq	Juipmo	ent: Solid Auger							
Method	Water	Depth (m)	Graphic Log	Material Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML - clayey SILT; low plasticity; greyish brown; firm; dry;	no	NATURAL ⁻	TOPSOIL	D			BH08/0.0-0.1 pH: 7.35
rer	2010			odour; CH - silty CLAY; high plasicity; yellowish brown/brown; si	/	NATURAL		м			PH: 7.35
Solid Auger	Mone observed		H	moist; no odour	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						_
o2											_
	_	0.5		End of borehole at 0.5 m							
		-		Auger refused at 0.5m							-
		-									-
		+									-
		1.0									_
											_
		L									_
		-									_
		_1.5									
18		-									_
9/12/		-									_
ited: 1		F									_
. Crea		2.0									_
A.GDT											_
TRALL		F								1	_
D AUS		F									4
NT STI		+									_
te: Gll		_2.5									
empla		F									-
3PJ T		F									
- PSP.(
WEST		3.0									
BURN		F									_
AIGIE		╞								1	_
4 - CR		\vdash									_
30168		-								1	-
ect: 18		_3.5									
Proje		F									-
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18		Ľ									
ort: El		L									
Rep		4.0									

ſ		F	3			Beveridge	Williams			BH	0	9		
		-				1 Glenferrie Road, Malvern VIC 31 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	44		So	il Bore			F	AGE 1 OF 1
	Cli	ent	:	Vic	ctoria	an Planning Authority				Project number:			1801	684
	Pro	ojec	ct:	-	-	geological and Acid Sulphate	e Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSON
			on:		aigie	burn West Precinct				Checked by:			A.HA	YES
_			starte	ed:		12/12/2018	Date completed: 12/1	2/20	18	Borehole depth (1.1	
		iller				Strata Drilling Pty Ltd				Borehole diamet	er (n	nm):	100	
_	Dri			uipme	ent:	Solid Auger							c	
Method		Water	Depth (m)	Graphic Log		Material D	escription		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
	 ML - clayey SILT; low plasticity; greyish brown; firm; dry; no odour; 						no	NATURAL [®]	TOPSOIL	D			BH09/0.0-0.1 pH: 6.40 ∖ EC: 0.06 /	
		CH - silty CLAY; high plasticity; yellowish brown and grey; stiff; moist; no odour						;	NATURAL		м			_
	-	eq	-	H		.,,								_
Solid Auger	19900	observ	<u>0</u> .5											
Solid		Que operation of the second se												_
														_
		_	-	H_{L}										_
		-	<u>1</u> .0											
			_			d of borehole at 1.1 m ger refused at 1.1m								
			-		Au	ger refused at 1.111								_
		-	-											_
		F	1.5											
2/18														_
1: 19/1			-											_
reated		-	-											_
GDT C		\vdash	<u>2</u> .0											-
RALIA														_
AUST			_											_
NT STD		-	-											_
te: GIN		┢	2.5											
empla			-											-
GPJ T														_
ST PSP.			-											_
N WE		┢	3.0											_
IEBUR		F	-											_
CRAIG														-
1684 -			-											_
:t: 180		┝	3.5											
Projec		┢	-											-
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18		F												_
ort: El			-											_
Rep			4.0											

		1	3			Beveridge	Williams			BH	1	0		
						1 Glenferrie Road, Malvern VIC 31 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	44		So	il Bore			Ρ	AGE 1 OF 1
	Cl	ient	t:	Vic	ctori	an Planning Authority				Project number:			1801	684
		oje				geological and Acid Sulphate	e Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSO
			ion:		aigie	burn West Precinct				Checked by:			A.HA	YES
_			starte	ed:		12/12/2018	Date completed: 12/1	2/20	18	Borehole depth (0.8	
_		rille				Strata Drilling Pty Ltd				Borehole diamet	er (n	יית):	100	
-	Dr	rillir	ng equ	-	ent:	Solid Auger							c	
	Method	Water	Depth (m)	Graphic Log		Material D	escription		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML - clayey SILT; low plasticity; greyish brown; firm; dry; no NATURAL TOPSOIL D odour;								BH10/0.0-0.1 pH: 7.09 ∖ EC: 0.03 7		
		-	_		СН	- silty CLAY; high plasticity;	yellowish brown and grey	;	NATURAL		м			
	uger	None observed	-		stif	f; moist; no odour	, , ,							-
	Solid Auger	one ot	0.5											_
		z	_ ,	H										_
		-	-	HH										BH10/0.7-0.8
F					End	d of borehole at 0.8 m								pH: 7.73 EC: 0.03
			1.0		Au	ger refused at 0.8m								
			-											_
			-											_
		ł	-											_
			1.5											_
∞			_											-
9/12/1			-											-
ted: 19			-											_
Crea														
IA.GD1			_											_
STRAL			-											_
TD AU			-											_
GINT S														_
plate: (_											-
J Tem		-	-											_
SP.GP.			-											-
VEST P			_ 3.0											_
URN V		ļ	_											
AIGIEB			-											_
4 - CR/		-	-											-
80168			_ 3.5											_
ject: 1														
3H Prc			_											_
: ENV E			-											-
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18			- 4.0											_

Image: Second product of the second product of th		1	3			Beveridge development & enviro	William	S		BH	1	1		
Project: Hydrogeological and Acid Sulphate Soil Assessment Logged/prepared by: A.HAYES/S.TOMKINSO Location: Craigieburn West Precinct Checked by: A.HAYES Date started: 12/12/2018 Date completed: 12/12/2018 Borehole depth (m): 2.5 Driller: Strata Drilling Pty Ltd Borehole diameter (mm): 100 Dot Drilling equipment: Solid Auger Material Description Observations $\frac{91}{60}$ $\frac{60}{60}$ Sample details 0 $\frac{10}{400}$ $\frac{10}{400}$ ML - clayey SILT; low plasticity; greyish brown; firm; dry; no NATURAL TOPSOIL D D 0.5 $\frac{10}{600}$ $\frac{10}{60}$ $\frac{10}{60}$ $\frac{10}{60}$ $\frac{10}{60}$ $\frac{10}{60}$ <						Ph: 03 9524 8888 Fax: 03 9524 88			So	il Bore			F	PAGE 1 OF 1
Location: Craigieburn West Precinct Checked by: A.HAYES Date started: 12/12/2018 Date completed: 12/12/2018 Borehole depth (m): 2.5 Driller: Strata Drilling Pty Ltd Borehole diameter (mm): 100 Drilling equipment: Solid Auger Observations 90 G G G G G G G G G G G G G G G G G G G	C	Clien	t:	Vic	toria	n Planning Authority				Project number:			1801	684
Date started: 12/12/2018 Date completed: 12/12/2018 Borehole depth (m): 2.5 Driller: Strata Drilling Pty Ltd Borehole diameter (mm): 100 Driller: Solid Auger Material Description Observations Image: Complete diameter (mm): 100 Image: Complete diameter (mm): Image: Complete dia	P	Proje	ect:	Нус	droge	eological and Acid Sulphate	e Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSO
Driller: Strata Drilling Pty Ltd Borehole diameter (mm): 100 Drilling equipment: Solid Auger Image: Solid Auger Image: Solid Auger Image: Drilling equipment: Solid Auger Image: Solid Auger Image: Solid Auger Image: Drilling equipment: Solid Auger Image: Solid Auger Image: Solid Auger Image: Solid Auger Image: Drilling equipment: Solid Auger Image: Solid Auger Image: Solid Auger Image: Solid Auger Image: Solid Auger Image: Drilling equipment: Image: Solid Auger Image: Drilling equipment: Image: Solid Auger Image: Drilling equipment: Image: Solid Auger Image: Drilling equipment: Image: Solid Auger Image: Drilling equipment: Image: Solid Auger Image: Solid Auger Image: Solid Auger Image: Solid Auger Image: Solid Auger </td <td>L</td> <td>.ocat</td> <td>tion:</td> <td>Cra</td> <td>igieb</td> <td>ourn West Precinct</td> <td></td> <td></td> <td></td> <td>Checked by:</td> <td></td> <td></td> <td>A.HA</td> <td>YES</td>	L	.ocat	tion:	Cra	igieb	ourn West Precinct				Checked by:			A.HA	YES
Drilling equipment: Solid Auger point is the second sec		Date	starte	ed:	:	12/12/2018	Date completed:	12/12/20)18	Borehole depth (m):		2.5	
potname material Description Observations mit of the second secon		Drille	er:			Strata Drilling Pty Ltd				Borehole diamet	er (n	nm):	100	
ML - clayey SILT; low plasticity; greyish brown; firm; dry; no odour; CH - silty CLAY; high plasticity; brown; hard; moist; no odour - - - - - - - - - - - - -		Drilli	ng equ	uipme	ent:	Solid Auger					1		1	
Barting and a straight of the straight of t	Method	Water	Depth (m)	Graphic Log		Material D	escription		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
CH - silty CLAY; high plasticity; brown; hard; moist; no odour 0.5 1.0 1.0 1.5 CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour							; greyish brown; firm	ı; dry; no		TOPSOIL	D			BH11/0.0-0.1 pH: 6.76
Image: Second				H	СН -	- silty CLAY; high plasticity;	brown; hard; moist;	no	NATURAL		м			EC: 0.02
Jage Participation CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour 1.0 CH - silty CLAY; medium plasticity; yellowish brown and brown and brown; firm; moist; no odour			-	K	odo	ur								_
Jage Participation CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour 1.0 CH - silty CLAY; medium plasticity; yellowish brown and brown and brown; firm; moist; no odour		0.5												_
Jabout Participation CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour Jabout Participation - Jabout Participation - <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>														
Jabout Participation CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour Jabout Participation - Jabout Participation - <tr< td=""><td></td><td></td><td colspan="6"></td><td></td><td></td><td></td><td></td><td></td><td>_</td></tr<>														_
Jabout Participation CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour Jabout Participation - Jabout Participation - <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></tr<>														_
Jabout Participation CH - silty CLAY; medium plasticity; yellowish brown and brown; firm; moist; no odour Jabout Participation - Jabout Participation - <tr< td=""><td></td><td></td><td>L Í</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td></tr<>			L Í											_
Solid Auger			_1.0		CLI	cilty CLAV; modium plactic	situ: vollowich brown	and	-					
		/ed	-		brov	wn; firm; moist; no odour	city; yellowish brown	i anu						_
	Auger	observ	-											_
	Solid	None o	-											_
End of borehole at 2.5 m - 2.5 End of borehole at 2.5 m - 2.5 Auger refused at 2.5 m - 4.0		2	1.5											
2.5 End of borehole at 2.5 m Auger refused at 2.5 m 1 - Auger refused at 2.5 m 	œ													_
2.5 End of borehole at 2.5 m Auger refused at 2.5 m 	/12/1		-	ИŲ										_
2.0 2.0 2.5 End of borehole at 2.5 m Auger refused at 2.5m on inferred basalt - - - - - - - - - - - - -	ed: 19		-	K										_
2.5 End of borehole at 2.5 m - Auger refused at 2.5 m on inferred basalt - -	Creat		20	KH										BH11/1.9-2.0
End of borehole at 2.5 m Auger refused at 2.5 m on inferred basalt	\.GDT			1 H										EC: 0.05
2.5 - 2.5 - Auger refused at 2.5 m Auger refused at 2.5 m on inferred basalt	RALIA			1//										
2.5 End of borehole at 2.5 m Auger refused at 2.5m on inferred basalt - - -	AUST													_
2.5 / End of borehole at 2.5 m Auger refused at 2.5m on inferred basalt - - -	NT STD		- Î											_
Auger refused at 2.5m on inferred basalt	te: GIN		2.5		End	of borehole at 2.5 m								
	empla				Aug	er refused at 2.5m on infer	rred basalt							
	GPJ T													
	T PSP.												1	
	N WES	1	3.0										1	_
	EBURN		-											_
	RAIG		$\left - \right $											
	84 - C													
	18016		3.5											
	oject:		\lfloor											
	3H Pr		-											_
	: ENV F		-											_
	teport		4.0											-

ſ		1	3			Beveridge	William	S ts		BH	1	2		
						1 Glenferrie Road, Malvern VIC 31 Ph: 03 9524 8888 Fax: 03 9524 88 www.beveridgewilliams.com.au	44		So	il Bore			F	PAGE 1 OF 1
	Cl	ient	t:	Vic	toria	an Planning Authority				Project number:			1801	684
	Pr	roje	ct:	Hy	drog	geological and Acid Sulphate	e Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSON
L	Lc	ocat	ion:	Cra	igie	burn West Precinct				Checked by:			A.HA	YES
	Da	ate	starte	ed:		12/12/2018	Date completed:	12/12/20)18	Borehole depth (m):		0.7	
		rille				Strata Drilling Pty Ltd				Borehole diamet	er (n	nm):	100	
	Dı	rillir	ng equ	uipme	ent:	Solid Auger			1		1		1	
Mathod	INIELIOU	Water	Depth (m)	Graphic Log		Material D	escription		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
F								NATURAL	TOPSOIL	D			BH12/0.0-0.1 pH: 6.55	
		Odour;							М			pH: 6.55 EC: 0.04		
100	uger												-	
	solia Auger	ne ob		ΗH										-
0		N N	<u>0</u> .5	H/										
			-											_
		End of borehole at 0.7 m Auger refused at 0.7m												_
		- Auger refused at 0.7m											_	
		+	_1.0											
			-											_
		ł	-											_
		ľ	-											_
			1.5											_
∞			-											-
)/12/1			-											-
ed: 19		ł	-											-
Creat			2.0											BH12/1.9-2.0 pH: 7.40 C: 0.26
A.GDT														EC: 0.26
TRALI			_											_
D AUS		╞	-											_
NT ST.		ł	_ 2.5											_
ate: GI		ł	_2.5											
[empl														_
GPJ 7			_											_
ST PSP		ŀ	-											_
N WE		ł	<u>3</u> .0											
EBUR			-											_
CRAIG		ŀ	-											_
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18			_											
: 1801			<u>3</u> .5											
roject		ŀ	-											4
/ BH P		ł	-											4
t: ENV		ŀ	-											-
Repo			4.0											_

	1	3		Beveridge Williams development & environment consultants			BH	1	3		
				1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			F	PAGE 1 OF 1
	Clien	t:	Vic	torian Planning Authority			Project number:			1801	684
F	Proje	ect:	Нус	drogeological and Acid Sulphate Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSON
	.ocat	tion:	Cra	igieburn West Precinct			Checked by:			A.HA	YES
_		starte	ed:	12/12/2018 Date completed: 12/12	2/20	18	Borehole depth (-		3.0	
_	Drille			Strata Drilling Pty Ltd			Borehole diamet	er (n	יm):	100	
	Drilli	ng equ		nt: Solid Auger							
Method	Water	Depth (m)	Graphic Log	Material Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
			M	ML - clayey SILT; low plasticity; greyish brown; firm; dry; odour;	no	NATURAL	TOPSOIL	D			BH13/0.0-0.1 BH13/0.0-0.1A
			K	CH - silty CLAT; high plasticity; brown; stiff; moist; no odd	/	NATURAL		м			181212-S-D02 pH: 6.52 EC: 0.06
			K								EC: 0.06
		-	ΗH								_
		<u>0</u> .5									-
		F									-
											_
		\vdash									_
		1.0	HU								
		$\left \right $	КИ								_
		\vdash	ΗH								-
	ed	E ł		From 1.3m: Increasing moisture							_
olid Auger	ne observed	1.5									
8 Solid	None o	-									_
9/12/1		\vdash									-
ed: 19		+	H								_
Creat		2.0	H								BH13/1.9-2.0
A.GDT			H	CH - silty CLAY; high plasticity; light yellowish brown; sof moist; no odour	;;						PH: 6.67 EC: 0.09
TRALI			H								_
D AUS		\vdash	ΗH								_
NT ST		_ 2.5									-
ate: GI		_2.5									
[empl		Ľľ									_
GPJ 7											_
ST PSP		\vdash	H								_
N WE		3.0		End of borehole at 3.0 m				$\left \right $		<u> </u>	
IEBUR	1										-
CRAIG	1										-
- 199	1	[
: 1801	1	<u>3</u> .5									
roject	1	-									_
BH P	1	-									_
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRAUA.GDT Created: 19/12/18 5	1	$\mid \mid$									-
Repo		4.0									_

	1	3		Beveridge Williams development & environment consultants			BH	1	4		
				1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			Ρ	AGE 1 OF 1
C	lien	t:	Vic	torian Planning Authority			Project number:			1801	684
P	roje	ect:	Нус	drogeological and Acid Sulphate Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSON
	.ocat	tion:	Cra	sigieburn West Precinct			Checked by:			A.HA	YES
		starte	ed:		2/2018		Borehole depth (1.5	
	Drille			Strata Drilling Pty Ltd			Borehole diamet	er (n	nm):	100	
	Drilli	ng eqi	uipme	ent: Solid Auger							
Method	Water	Depth (m)	Graphic Log	Material Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
			H	ML - clayey SILT; low plasticity; greyish brown; firm; dry; odour;	no NAT	URAL	TOPSOIL	D			BH14/0.0-0.1 pH: 7.40 ∖EC: 0.26
		_	K								EC: 0.26
	CH - silty CLAY; high plasticity; yellowish brown and grey; stiff; moist; no odour					URAL		Μ			_
		-									_
		_0.5									
rer	erved	-									_
Solid Auger	None observed										
Sol	Non	-									-
	_1.0	H									
			K								-
		-	Κŀ								-
		-									-
		1.5									BH14/1.4-1.5 pH: 7.73 EC: 0.15
∞		_		End of borehole at 1.5 m Auger refused at 1.5m							EC: 0.15
1/12/1		-									-
ed: 19		-									-
Creat		2.0									-
A.GDT		_									
TRALI		_									_
D AUS		\mid									_
NT ST		-									_
ate: GI		_2.5									
Templ											-
GPJ 7											_
ST PSP		$\left - \right $									-
N WE		<u>3</u> .0									
EBUR		$\left - \right $									-
CRAIG		-									-
684 - (_
: 1801		3.5									
roject:		\mid									-
BH P		\mid									-
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRAUA.GDT Created: 19/12/18		\mid									-
Repor		4.0									

	1	\mathbf{R}		Beveridge Williams		BH	1	5		
			Ē	1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au	So	il Bore			F	PAGE 1 OF 1
	Clien	it:	Victo	orian Planning Authority		Project number:			1801	684
	Proje		-	ogeological and Acid Sulphate Soil Assessment		Logged/prepared	l by:		A.HA	YES/S.TOMKINSO
	Locat	tion:	Craig	gieburn West Precinct		Checked by:			A.HA	YES
		starte	ed:	12/12/2018 Date completed: 12/12,	/2018	Borehole depth (-		1.4	
	Drille			Strata Drilling Pty Ltd		Borehole diamet	er (n	nm):	100	
	Drilli	ng eq	uipmen	t: Solid Auger					-	
Method	Water	Depth (m)	Graphic Log	Material Description	Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
		_	F	ILL (ML) - clayey SILT; grey; with gravel (fine grained, sub ounded); dry; no odour;	FILL		D			_
		0.5	KII/I r	ML - clayey SILT; low plasticity; greyish brown; firm; moist no odour	; NATURAL		м			BH15/0.3-0.4 pH: 6.25 ∖EC: 0.11
	/ed	0.5 CH - silty CLAY; high plasticity; brown; stiff; moist; no odo		ır						
Solid Auger	None observed	_								_
Solic	None	-								_
		_ <u>1</u> .0								_
		_								_
		_								_
		-								BH15/1.3-1.4
F		1.5	E	nd of borehole at 1.4 m						pH: 6.74 EC: 0.18
~				Auger refused a 1.4m						
9/12/1		-								-
ted: 19		-								_
Crea		2.0								_
IA.GD		-								-
STRAL		-								-
TD AU		-								_
GINT		2.5								
plate:		-								_
J Ter		-								-
PSP.G										-
WEST		<u>3</u> .0								
BURN		-								_
RAIGIE		-								-
84 - Ci		+								-
18016		3.5								
roject:		-								-
BH P		-								-
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA. GDT Created: 19/12/18		-								-
Repo		4.0								_

	1	3			Beveridge		S nts		BH	1	6		
					1 Glenferrie Road, Malvern VIC 31 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	44		So	il Bore			F	PAGE 1 OF 1
C	lien	t:	Vic	ctoria	an Planning Authority				Project number:			1801	684
Р	roje	ect:	Ну	drog	geological and Acid Sulphat	e Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSO
L	ocat	tion:	Cra	aigie	burn West Precinct				Checked by:			A.HA	YES
D	ate	starte	ed:		12/12/2018	Date completed:	12/12/2	018	Borehole depth (-		1.3	
	rille				Strata Drilling Pty Ltd				Borehole diamet	er (n	nm):		
D	rilli	ng eq	uipmo	ent:	Solid Auger			1					
Method	Water	Depth (m)	Graphic Log		Material D	escription		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
		_	\mathbb{H}	ML	- clayey SILT; low plasticity	; brown; firm; dry; n	o odour;	NATURAL	TOPSOIL	D			BH16/0.0-0.1 pH: 6.16
		_	H										EC: 0.05
		_	HH	СН	- silty CLAY; high plasicity;	brown; stiff; moist; r	io odour	NATURAL		M			_
		_ 0.5	1H										_
ger	erved	_0.5											
Solid Auger	None observed												
Sol	None	_	H									_	
								-					BH16/0.9-1.0
		<u>1</u> .0			- sity CLAT, fight plasticity,	grey, min, moist, no	00001						pH: 7.84 EC: 0.21
		_											-
		_											_
		_		Enc	d of borehole at 1.3 m ger refused at 1.3m								_
		_1.5											
		-											_
		-											_
		-											_
		2.0											_
		_											_
		-											_
		-											-
		_ 2.5											-
		<u></u> ,											
													_
		$\left - \right $											_
		<u>3</u> .0											_
		\vdash											-
		3.5											
		-											_
		-											_
		$\left - \right $											-
		- 4.0											-

Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRAUA.GDT Created: 19/12/18

	1	3		Beveridge Williams development & environment consultants			BH	1	7		
				1 Glenferrie Road, Malvern VIC 3144 Ph: 03 9524 8888 Fax: 03 9524 8899 www.beveridgewilliams.com.au		So	il Bore			F	PAGE 1 OF 1
(Clien	t:	Vic	ctorian Planning Authority			Project number:			1801	684
	Proje			drogeological and Acid Sulphate Soil Assessment			Logged/prepared	l by:			YES/S.TOMKINSO
	locat			aigieburn West Precinct			Checked by:			A.HA	YES
		starte	ed:	12/12/2018 Date completed: 12/1	2/20)18	Borehole depth (0.5	
	Drille			Strata Drilling Pty Ltd			Borehole diamet	er (n	nm):	100	
	Drilli	ng equ		ent: Solid Auger						c	
Method	Water	口 迈 ML - clayey SILT; low plasticity; greyish brown; firm; dry; no					servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
			H	ML - clayey SILT; low plasticity; greyish brown; firm; dry; odour;	no	NATURAL	TOPSOIL	D			BH17/0.0-0.1 pH: 7.14 ∖ EC: 0.01 /
Iger	None observed			CH - silty CLAY; high plasticity; brown; stiff; moist; no	/	NATURAL		М			<u> </u>
Solid Auger	ne obs	-	H	odour;							_
Š	Ň	-									_
\vdash		0.5	VIII	End of borehole at 0.5 m							
				Auger refused at 0.5m							
											_
		-									_
		_1.0									
		-									_
											_
		_1.5									
18		-									_
19/12/		-									_
ated: 1											
T Cre		2.0									
IA.GD		-									_
STRAI		-									_
STD AL		$\left - \right $									_
GINT S		2.5									
plate: (_									_
Tem		-									_
SP.GPJ		-									_
EST P		_ _ <u>3</u> .0									_
JRN W											
IGIEBL											
CRA		\mid									_
01684		-									_
ect: 18		<u>3</u> .5									
Proje											
NV BH		[
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18		\mid									_
Rep		4.0									

	1	\mathbf{R}		Beveridge	Williams			BH	1	8		
				1 Glenferrie Road, Malvern VIC 31 Ph: 03 9524 8888 Fax: 03 9524 8 www.beveridgewilliams.com.au	.44		So	il Bore			Ρ	AGE 1 OF 1
	Clier	nt:	Victo	orian Planning Authority				Project number:			1801	684
	Proje	ect:	Hydı	rogeological and Acid Sulphat	e Soil Assessment			Logged/prepared	l by:		A.HA	YES/S.TOMKINSON
	Loca	tion:	Crai	gieburn West Precinct				Checked by:			A.HA	YES
	Date	starte	ed:	12/12/2018	Date completed: 12/	12/20)18	Borehole depth (-		3.0	
_	Drille			Strata Drilling Pty Ltd				Borehole diamet	er (n	nm):	100	
	Drilli	ing equ	uipmer	nt: Solid Auger			1					
Method	Water	Depth (m)	Graphic Log	Material [Description		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML - clayey SILT; low plasticity odour;	y; greyish brown; firm; drչ	; no	NATURAL	TOPSOIL	D			BH18/0.0-0.1 pH: 6.60 ∖ EC: 0.07 /
		- , - , _ 0.5 - , - , - , - , - ,		CH - silty CLAY; high plasicity;	brown; stiff; moist; no oc	our	1 NATURAL		м			
18 Solid Auger	None observed	 1.5		CH - sandy CLAY; medium plas moist; no odour	sticity; light brown; firm;							-
NT STD AUSTRALIA.GDT Created: 19/12/		_ _ _2.0 _ _ _										BH18/1.9-2.0 pH: 7.44
WEST PSP.GPJ Template: GIN		_2.5 _ _ _ 		SC - clayey gravelly SAND (me graded, sub angular); low plas dense; moist; no odour	dium to coarse grained, g sticity; yellowish brown;	эр	-					
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18 S		_ _ 3.5 _	E	End of borehole at 3.0 m								-
Report: El		4.0										_

		R			Beveridge development & enviro	Williams			BH	1	9		
	-		ľ		1 Glenferrie Road, Malvern VIC 314 Ph: 03 9524 8888 Fax: 03 9524 88 www.beveridgewilliams.com.au			So	il Bore			P	PAGE 1 OF 1
	Clie	nt:	-		n Planning Authority				Project number:			1801	
		ect:	-	-	eological and Acid Sulphate	e Soil Assessment			Logged/prepared	l by:			YES/S.TOMKINSO
		ation:		-	ourn West Precinct				Checked by:			A.HA	YES
		e starte	ed:	-	12/12/2018	Date completed: 12/12	2/20	18	Borehole depth (-		0.8	
_	Dril				Strata Drilling Pty Ltd				Borehole diamet	er (n	nm):	100	
⊢	Drill	ling eq		ent:	Solid Auger			1				_	
Method	Water	Depth (m)	Graphic Log		Material D	escription		Ob	servations	Moisture	PID (ppm)	Contamination Ranking	Sample details
				ML -	- clayey SILT; low plasticity	; greyish brown; firm; dry;	no	NATURAL ⁻	TOPSOIL	D			BH19/0.0-0.1 pH: 7.16
			\mathbb{N}	odo CH -	- silty CLAY; high plasticity;	brown; stiff; moist; no odd	/ our	NATURAL		м			PH: 7.16
Ŀ	rved	_	K										_
Solid Auger	None observed	-	ΗV										-
Soli	None	0.5	ΗH										
		-	K//										_
													_
		_		End Aug	of borehole at 0.8 m er refused at 0.8m								_
		1.0		.0									
		+											_
		-											_
		F											_
		1.5											
∞		_											_
/12/1		-											_
ed: 19		-											_
Creat		2.0											_
GDT		0											
RALIA													
AUST													_
NT STC		F											_
Report: ENV BH Project: 1801684 - CRAIGIEBURN WEST PSP.GPJ Template: GINT STD AUSTRALIA.GDT Created: 19/12/18		_2.5											_
emplat		\vdash											_
SPJ Te		F											-
- PSP.(
WEST		3.0											
BURN		\vdash											_
RAIGIE		\vdash											-
34 - CF		\vdash											-
80168													-
ject: 1												1	
H Pro													
ENV B		F											_
port: l		\vdash										1	_
Re		4.0											

APPENDIX E GEOTECHNICAL REPORT (STRATA GEOSCIENCES AND ENVIRONMENTAL, 2018)

Preliminary Geotechnical Reconnaissance for

Craigieburn West Precinct Structure Plan

Craigieburn

Commissioned by

Beveridge Williams Pty Ltd

December 2018

Important Notes:

The author, Strata Geoscience and Environmental, gives permission for this report to be copied and distributed to interested parties only if it is reproduced in colour and in full including all appendicies. No responsibility is taken for the contents and recommendations of this report if it is not reproduced as requested.

Strata Geoscience and Environmental reserves the right to submit this report the relevant regulatory agencies where it has a responsibility to do so.

Table of Contents

Abstract	4
1. Introduction	5
1.1 Precinct Location and Investigation Context	
1.2 Scope of Investigation	
1.3 Guidelines and Standards Referenced	
2. Investigation	6
2.1 General	
2.2 Findings	6
2.2.1 Geology and Soils	
2.2.2 Near Surface Hydrogeology	7
2.2.3 Laboratory Testing	8
2.2.4 Geotechnical Risk Assessment	9
3. Geotechnical Recommendations for Precinct Development	10
3.1 Indicative Soil Design Parameters	10
3.2 Building, Roading and Utility Recommendations	11
3.2.1 Pad, Strip and Slab Foundations	
3.2.2 Pier/Pile Systems	12
3.2.3 Roading and Utility Infrastructure	12
3.3 Earthworks Specifications and Suitability of Endemic Soils For Reuse	14
3.4 Retaining Wall Specifications Recommendations	15
3.5 Water Management Infrastructure Recommendations	15
4. Conclusions and Further Recommendations	16
5. Appendices	19

Abstract

Beveridge Williams Pty Ltd contracted Strata Geoscience and Environmental Pty Ltd to conduct a preliminary geotechnical reconnaissance of areas underlying the proposed Craigieburn West Precinct.

The investigation consisted of geotechnical drilling to a maximum of 3.0 meters below the existing ground surface to characterise the nature of soils/rock underlying the precinct.

The precinct is a composite of a number of rural/residential holdings underlain by Clayey SILTS (ML) and Silty CLAYS (CL/CH) with variable bore refusal over inferred Quaternary aged new volcanics. Near surface basalt rock outcroppings were observed over significant areas of the precinct, whilst minor areas in the south are underlain by inferred Devonian Granite and Silurian aged Siltstones. Samples of soil were submitted to laboratory testing and found to be highly dispersive.

Given these findings, precinct-specific geotechnical risks to site development are highlighted and preliminary recommendations for utility services, foundations systems, pavements and earthworks are made.

1. Introduction

1.1 Precinct Location and Investigation Context

The precinct is located at immediate south of Mt Ridley Road and immediately east of Mickleham Road, bordering the suburbs of Craigieburn and Mickleham. The ground surface is predominantly vegetated with grasses and remnant natives. Site photographs and a site plan showing existing site conditions is presented in Appendix 1/2. This investigation has been triggered as part of a due diligence process prior to development.

1.2 Scope of Investigation

It is the scope of this investigation to consider geotechnical factors affecting site development. These factors have been determined in consultation with the Beveridge Williams Pty Ltd and are subject to time and budgetary considerations. The investigation comprised initial briefings, review of all relevant literature and site specific investigation as detailed in Section 2.

1.3 Guidelines and Standards Referenced

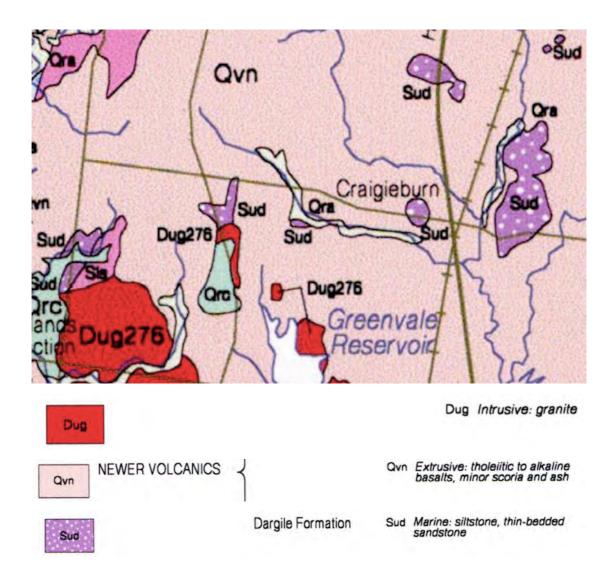
This investigation is made in accordance to the following standards and guidelines:

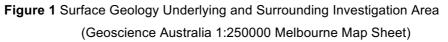
- Standards Australia (1993) AS1726-Geotechnical Site Investigations
- Standards Australia (1997) AS1289.5.2.1 Soil Testing for Engineering Purposes
- Standards Australia (2004) AS/NZS4360 Risk Management
- Standards Australia (2007) AS3798 "Guidelines for Earthworks on commercial and residential subdivision"
- Standards Australia (2011) AS2870 "Residential Slabs and Footings"

2. Investigation

2.1 General

The investigation was carried out on 12-13 December 2018 with characterisation of the overburden soils by drilling of 19 geotechnical test bores to a maximum depth of 3.0 meters below the existing ground surface (mgs) across the precinct using a Dando Terrier Drilling Rig with Solid Flight Rotary Auger. In situ soil strength of cohesive soils was tested using a vane shear/DCP and pocket penetrometer and soil densities were noted where appropriate. Soil samples were taken for latter geotechnical testing.


2.2 Findings


2.2.1 Geology and Soils

Published geological mapping of the immediate area (Fig 1) indicates that the precinct is underlain by three geological unit, namely:

- 1. Quaternary aged Newer Volcanics (Qvn)
- 2. Silurian aged Siltstones (Sud)
- 3. Devonian aged Granite (Dug)

Geotechnical soils to a maximum depth of 3.0 meters below the existing ground surface (mbg) and found a variable veneer of Clayey Silts (ML) and Silty CLAYS (CH) overlying inferred Quaternary-aged Basalts. Stoney rises and rocky outcroppings of basalt were observed over significant areas of the precinct. Bore BH18 was associated with inferred Devonian aged Granites whilst BH 7 is thought to be associated with Silurian Siltstones. Bore logs and bore locations are presented in Appendix 2.

2.2.2 Near Surface Hydrogeology

No groundwater was encountered throughout geotechnical reconnaissance over the site. It is noteworthy that shallow ephemeral water tables may exist throughout wetter periods. Accordingly construction activities are not recommended preceding during or immediately post periods of high rainfall.

2.2.3 Laboratory Testing

Samples were submitted to Eurofins Laboratories for the following NATA accredited testing:

- Moisture Content
- Atterberg Limits
- Emmerson Class

Results are presented in Appendix 3 and are discussed in Section 3.

2.2.4 Geotechnical Risk Assessment

A brief geotechnical risk assessment based upon site reconnaissance, geotechnical drilling (Appendix 2) and laboratory results (Appendix 3) is presented below:

Table	1 Geotechnical Risk Assessment
Geotechnical Parameter	Results
General Comments	Volcanic plain parting to rolling hills and gully to the south. Partially vegetated site with pockets of mature trees, numerous farm dams, minor disturbed areas.
Geotechnical Risks	
Earthworks	Shallow hard rock deposits likely over significant areas of the precinct. This will impact excavation activities including excavation of service trenches, road cutting, pile inserts and foundation construction.
Dust	Aerialisation of dust likely when bulk earthworks conducted in drier periods. Dust management measures to prevent aerialisation should be implemented.
Uncontrolled Fill	Low - Moderate risk – uncontrolled fill MUST not be used as a founding substrate for roads, buildings or services infrastructure. Fill may be created through site development or by bulk earthworks.
Slope Stability	Generally low risk
Bearing Capacity	Low risk if bearing pressures up to 100 kPa adopted in natural clays subject to adequate localised drainage.
Differential Settlement	Low to Moderate Risk- up to 25mm possible
Soil Reactivity	High Risk – design to predicted Ys up to 75 mm
Erosion Potential	Moderate risk – stabilise fill batters, capture and diver all stormwater flows
Flood Risk	Not known
Surface/Subsurface Water	Numerous farm dams. Groundwater not encountered – perched water tables over endemic clays (where present) likely throughout wetter months, drainage required where foundations/utilities/roading are founded in this zone. Existing dams should not be used as subdivisional development areas without further site specific intensive geotechnical assessment
Backfilling suitability	Suitable
Other – Aggressive Soils, Acid Sulphate Soils, Collapsible soils	Not likely

3. Geotechnical Recommendations for Precinct Development

It is noteworthy that development plans were unavailable at the time of this investigation and as a result the following construction recommendations must be treated as preliminary subject to ratification once plans are finalised.

3.1 Indicative Soil Design Parameters

Indicative materials design parameters for encountered materials onsite are provided below. The values are estimations based on well-known correlations. These values should not be overemphasized and specialized laboratory testing is recommended if a higher level of accuracy is desired or required. In addition, other factors that need to be considered for soil and rock parameter selection are: geological and geotechnical background information, possible modes of failure, ranges of in situ and imposed stresses, potential variability of the parameter values and the sensitivity of the design to these variabilities, extent of the zone of influence governing the soil behaviour, influence of workmanship on artificially placed or improved soils, effects of construction activities on the properties of the in situ soil, etc (clause 7.3.4. of AS 5100.3-2004).

	Table 2 Indicative Soil Design Parameters														
Material* ¹	Typic al Depth to top of unit (mm)	Bulk Unit Weight (kN/m ³) * ²	Ground Surface Movement (Ys) (mm)	UCS (kPa)	(φ)* ³	φ'* ³	Cu * ³	Cu ^{1*3}	Bearing Pressure (Servicea ble) (kPa) * ⁴	Allowable Skin Friction	E (MPa)				
CLAYEY SILTS (ML)	0-300	15	10	20	0	30	10	0	50	0	0				
SILTY CLAYS(CL/ CH)	VARI ABLE	18	Up to 75	100	0	25	20	0	100	15	5				

Legend:

 Υ = Unit Weight (kN/m³), Y_s = Groundsurface Movement (mm), ϕ = Internal Angle of Friction (deg), ϕ ' = Effective (drained) Internal Angle of Friction (deg), Cu = Undrained Soil Cohesion (kPa), Cu' = Effective (drained) Undrained Soil Cohesion (kPa), E = Youngs Modulus (MPa)

^{*1} Assumes soils are at a dry or slightly moist moisture content

^{*2} Estimated from bore logs/strength test results as appropriate.

^{*3} Apply to short term loading conditions eg windloads

^{* 4} Where allowable bearing pressure in rock is given, coring of excavated substrate and PLT testing must be commissioned to confirm. Recommended depth does not consider overturning parameters and this must be considered by the foundation designer.

⁵ The values provided for rock should be treated as a reference only as values provided are based on typical values provided in the literature and are not based on the actual rock conditions on site (i.e. rock testing was not undertaken). For further information related to the rock in-situ, additional investigation should be undertaken.

*⁶ Where depth to bedrock is given it is a guide only and will vary over the proposed development area(s). Refusal in geotechnical bores may be different than that of larger construction machinery and this may need to be factored into foundation design and contractor quotations.

3.2 Building, Roading and Utility Recommendations

3.2.1 Pad, Strip and Slab Foundations

Pad, slab and strip footings are acceptable foundation solutions only when founding in underlying natural Silty CLAYS (CL/CH). The following loadings are appropriate:

Table 3 Ultim Pressures (kP	-
Foundation Type	Silty CLAY
	(CL/CH)
Continuous Strip	200
Isolated Pad	200
Raft	200

3.2.2 Pier/Pile Systems

All piers/piles MUST:

- Penetrate through any uncontrolled fill, upper Clayey SILTS (ML) and into firm to stiff underlying Silty CLAYS (CL/CH)
- Be founded at a minimum of 1.5 m below the existing ground surface (or refusal). This recommendation may be revised subject to review of specific development plans when available.
- Have a maximum end bearing of 100 Kpa and a maximum skin friction of 15Kpa below the first meter of natural soils.

It is further recommended that:

- A maximum pile spacing of 2.0 m is recommended for Natural CLAYS (CL/CH)
- This will require reduction where piles are proximal to existing structures or in deep uncontrolled fill.
- Soils immediately in front of piles should be left in place until immediately before construction proceeds.
- Shotcerete in-filled walls MUST be constructed as soon as possible once infill is removed and reinforcing is placed
- Conduct excavation/construction excavations in drier months and not after significant prolonged rainfall or when perched water tables or significant groundwater recharge is occurring.
- All bulk excavations be regularly monitored.

3.2.3 Roading and Utility Infrastructure

Geotechnical drilling of the precinct revealed Clayey SILTS (ML)/Silty CLAYS (CL/CH). Based on experience with similar subgrades, it is recommended that:

• A CBR range value of 3-6 % be adopted for subgrade materials

This range is close to a lower bound value for these materials and are based

on the assumption that the topsoil will be stripped (where required) prior to pavement construction. It is also contingent upon adequate site preparation by proof rolling (to detect any unsuitable soft or loose material) and subgrade compaction.

Higher values may be achievable where subgrade materials comprise a high proportion of granular and rock materials potentially won from excavation. Furthermore remedial work associated with ripping, watering and reworking of high plasticity CLAYS may improve compaction and lead to an increase in adopted CBR design values. Such values can only be determined after a representative sample comprising similar plasticity content and particle size, as proposed to be used, is subjected to additional CBR testing.

The above recommendations are based on the provision and maintenance of adequate surface and subsurface drainage.

Excavation/directional drilling of underground servicing infrastructure will be in endemic clays and rock. Hard rock is likely to be encountered over significant areas of the precinct and will likely require specialist excavation techniques including rock breaking and or blasting.

3.3 Earthworks Specifications and Suitability of Endemic Soils For Reuse

Geotechnical drilling revealed that site excavation to would be in filling material/residual soils/rock. Geotechnical test pitting immediately prior to bulk excavations over the proposed excavation areas is recommended given the potential for shallow rock over some areas as encountered in some bores and observed over the landscape. This may affect the ability to cost effectively establish underground services in some areas.

Recommended safe generic batter angles for soil found are as follows:

	l Safe Batter Angles for ral Classes
Material*	Safe Batter Angle
	(degrees)
Fill/SANDS	30
(SW/SP/SC/SM)	
Soft- Firm CLAYS	30
(CL/CH)	
Stiff CLAYS (CL/CH)	45
Dense Clayey SANDS	45
(SC)	
Dense Clayey Gravels	45
(GC)	

* Assumes soils are at a dry or slightly moist moisture content

Given that soils will unlikely be at dry to slightly moist moisture contents, an engineered design solution for shoring and retaining of pit walls will be required.

Endemic soils (not uncontrolled fill) won from site is likely unsuitable for reuse given soil dispersion results. Further testing is recommended once development plans are available.

3.4 Retaining Wall Specifications Recommendations

Design and installation of retaining walls should comply with the following:

- Backfilling must
 - Comprise imported granular free draining material <5% fines.
 - o Not be compacted
 - The top 10% of the total height can be backfilled with endemic reserved topsoil spoil. A geotextile liner should be place below this material to prevent fine ingress into granular material below.
- Checks for sliding/overturning can be made using above parameters.
- Surcharges to lateral earth pressures of a minimum of 5kPa be applied to all walls
- Walls MUST have adequate drainage installed. This drainage MUST:
 - Be comprised of geotextile encased commercially available agricultural pipe.
 - Have discharge points to stormwater pits/outlets
 - Have accessibility and flush points fitted.
 - Perched water tables associated with upper soil profiles may result in significant shallow groundwater discharge into excavations throughout wetter months. Accordingly it is highly recommended that all bulk earthworks occur throughout the drier months of the year and that construction begin immediately after excavations are complete.

3.5 Water Management Infrastructure Recommendations

Emmerson Class testing revealed that subsoils are generally prone to severe soil dispersion, it is recommended that bulk storages have excavated surfaces treated with gypsum and are lined to prevent potential soil dispersion/erosion and the resultant risks associated with structural infrastructure failure and water quality decline. It is further recommended that an Erosion Risk Assessment and Soil and Water Management Plan be commissioned and implemented prior to site development.

4. Conclusions and Further Recommendations

The following geotechnical risks have been identified throughout this investigation:

- Areas of shallow rock or surface rock outcroppings
- Uncontrolled fill/disturbed soils
- Potential for soil dispersion and erosion
- Proximal trees within zone of influence for future foundations causing abnormal soil moisture gradients.
- Wet areas associated with existing farm dams, springs.

These risks may be controlled by:

- Minimising bulk earthworks, site cutting and underground services installation where possible. Employ suitable excavation techniques after test pitting which may involve specialist techniques such as blasting or hammering.
- Commissioning and implementing a Soil and Water Management Plan and Erosion Risk Assessment prior to site development.
- Installation/Maintenance of adequate site drainage.
- Adoption of recommended soil design parameters.
- Exclude farm dams and springs from future development incorporate into stormwater design elements or retain as landscaping/recreation amenities.

16

Prior to construction it is highly recommended that:

- Results of this investigation MUST be ratified when specific development plans are finalised. Failure to ensure this will void the classifications and recommendations contained within this report. Further geotechnical investigation/testing may be required at this time.
- Test pitting with construction machinery is recommended before construction commences to determine excavatability of refusing substrate (if found).
- Abnormal moisture conditions as defined in AS2870-2011 Clause 1.3.3 (a-d) must be considered in the design of competent footings. Without such consideration distresses of foundations may occur and result in non acceptable performance as defined in AS2870-2011 Clause 1.3.1.
- This investigation did not determine rock strength parameters of the refusing substrate (if found) and therefore no comment is made about the excavatability of rock at depth. Hard rock may be encountered which may be difficult to excavate and would therefore increase the costs associated with bulk earthworks. Test pitting is recommended before construction commences to determine rock excavatability.
- Rocks may be liberated from bulk earthworks or vertical boring. Where large rocks are liberated this may impact upon the ability to cost effectively build on the site and further advice should be sort from Strata. Such profiles may also significantly increase earthworks costs and or materials cost in foundations.

Throughout construction it is highly recommended that:

- Uncontrolled fill MUST NOT be used as a founding substrate. Such fill may be created after site investigation as part of site levelling activities.
- All earthworks onsite must follow the recommendations of AS 3798-2007.
- Consideration should be given to drainage and sediment control on site during and after construction. Specifically upslope interceptor drainage must be placed around footings areas and downpipes must be directed away from discharging into founding areas.
- All colluvial rocks and boulders in founding zones should be removed
- All large trees near the building envelope must be removed. If construction takes place in summer or autumn then moisture conditions should be stabilised by soaking of dry areas around the former tree.
- Vertical barriers to prevent root incursions around founding zones should be considered in areas where trees are proximal to foundations

Questions regarding any aspect of this report may be directed to the author via the email contact below.

Sven Nielsen Stage 2011 Stage 2011 Sven Nielsen Stage 2011 Stage 2

S Nielsen MEngSc CPSS Director Strata Geoscience and Environmental Pty Ltd E:sven@strataconsulting.com.au

5. Appendices

This report contains the following appendices:

- Appendix 1 Site Photos
- Appendix 2 Bore Logs and Field Notes
- Appendix 3 Laboratory Results
- Appendix 4 Statement of Limitations

All appendices **must** accompany this report and be reproduced faithfully in **full colour**.

Appendix 1 Site Photos

Plate 1 (above)Basalt rock outcroppings

Plate 2 (below) Look south east over northern areas showing stony rises.

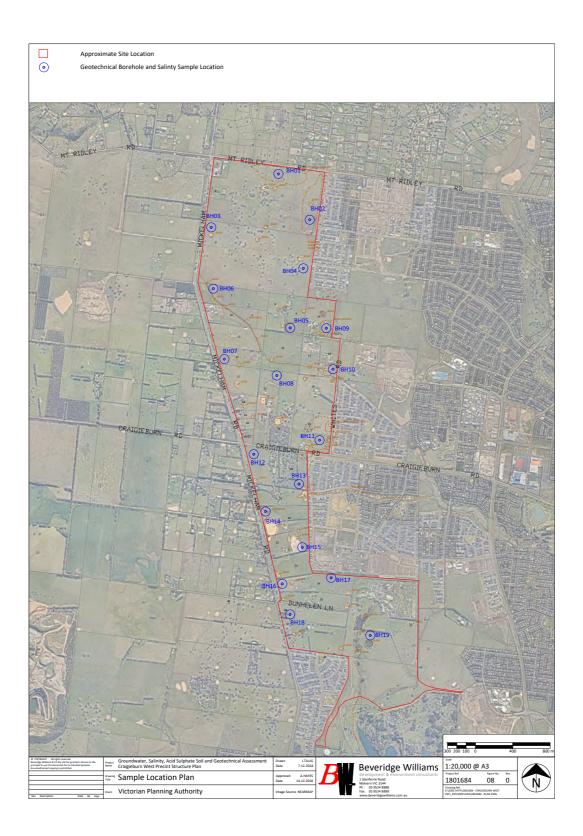


Plate 3 (above) Drilling BH05

Plate 4 (above) Example of large farm dam within precinct.

Appendix 2 Bore Logs

Location	Easting	Northing
BH01	313181.37	5840470.76
BH02	313518.94	5839977.43
BH03	312456.91	5839895.91
BH04	313447.95	5839457.81
BH05	313307.14	5838818.76
BH06	312483.67	5839239.3
BH07	312602.04	5838483.87
BH08	313164.06	5838307.89
BH09	313694.74	5838814.89
BH10	313765.92	5838376.15
BH11	313622.11	5837613.6
BH12	312916.9	5837463.42
BH13	313401.53	5837143.36
BH14	313043.17	5836848.49
BH15	313437.08	5836464.28
BH16	313222.75	5836072.35
BH17	313746.15	5836136.17
BH18	313305.14	5835743.5
BH19	314165.05	5835518.24

			strata	Bore Log								BH01							
	Clier	nt:	VICTORIAN PLANNING	AUTHORI	TY			11	1				Coords	3.					
			CRAIGIEBURN WEST P								_				Dec. 1				
			DANDO TERRIER DRILL ROTARY AUGER	RIG							-		Bearin R.L. SE		Dip;				
÷e	Fluid	1	Nö										Logged Date:	d by	SN 12/12/18				
1.0				Soil	. 18	Rock		Wea	therin	ng Fr	ac. S	pacing		pling ar	d Insitu Testing				
RL	Depth (mm)	Graphic Log	Material Description	V Soft/V Loose Soft/Loose Fim/M Dense	V Stiff/V Dense Ex Low Very Low	Medium	Very High Extremely High	HW	SW	HR 0.01	0.05	0.5	TYPE ROD%		t Results and				
Ĭ	6	1000	GREVISH BROWN CLA	YEY SILT	(ML1.FIF	RM. LI	P					Ъđ							
	1.1		TRENDING BROWN SI	TY CLAY	(CH) ST	TIFF,	HP												
-	500							H	+			++							
									11										
	1																		
	1000																		
	The s		TRENDING FIRM, GRAD	UAL REF	USAL														
-		-										++							
	1500							T											
								H	++			++							
		2																	
	2000	1																	
	1.1																		
	2600																		
	11																		
	3000																		
	3000																		
		5																	
	1.2	ē į,																	
_	3500																		
												1							
-																			
	4000																		
		1																	
_																			
	4500											11							
-		2																	
-	5000																		
	5600			TIT	BOI	RETE	RMIN	ATE	DAT	1.3 M	1	T	TITI						
-		1																	
	-																		
-	6000	1			1 18		111	11	11	11	11	11			_				

			strata		Bore Log	BH02
	Clie	nt:	VICTORIAN PLANNING A	UTHORITY		Coords
			CRAIGIEBURN WEST PS DANDO TERRIER DRILL			Bearing: Dip:
	Drillin	ig Me	ROTARY AUGER	NIG.		R.L. SEE WS
e e	Fluid	-1-	NO	l		Logged by: SN Date: 12/12/18
1.0	The second			Soil 🔆	Rock Weathering Frac. Spacing	(n Sampling and Insitu Testing
	(Lue	5	Material Description	Loos se se se bens	A Hig	
RL	Depth (mm)	Graphic Log		V Softry Loose SoftLoose Firm/M Dense Stift/Dense V Sfift/ Dense Ex Low Very Low	Leven High High Even High Even High Even High NMM NMM NMM NMM NMM NMM NMM NMM NMM NM	Test Results and Comments
Ĩ.	in i	1	GREVISH BROWN CLAY TRENDING BROWN SIL	EY SILT (ML) HH	(M, LP	
			TRENDING BROWN SIL			
-	500					
	1000					
	1000					
	1500					
			TRENDING OUVE RROW	IN SILTY CLOV (CH) FIRM, HP, GRADUAL REFUSAL	
	-		TRENDING OLIVE BROW			
	2000	-				
	1					
	2603	-				
	3000					
		5				
		21				
	3600					
	in					
	4000					
		1				
		5)				
	4500	27				
	5000					
		-				
	-			BOF	RE TERMINATED AT 2.0 M	
	5500					
	1					
	-					
	6000	1.0				

			strata	Bore I	log	BH03
	Clier	_	VICTORIAN PLANNING A			Coords
	Drill Ty	/pe: Met	CRAIGIEBURN WEST PS DANDO TERRIER DRILL ROTARY AUGER NI		Allenter	Bearing: Dip: R.L: SEE WS Logged by: SN Date: 12/12/18
RL	Depth (mm)	Graphic.Log	Material Description	V SoftV Loose FortV of Soft Loose Soft Loose V Stift Dense Ex Low Very Low Medium High Very High Kermely High	aathering Frac. Spacing	(n Sampling and Insitu Testing 비행 전 Test Results and Comments
ĺ.			GREVISH BROWN CLAY TRENDING BROWN SIL	Y SILT (ML) FIRM, LP		
	500					
	1500		TRENDING YELLOWISH	3ROWN SILTY CLAY (CH) FIR	M, HP, GRADUAL REP	USAL
	2000					
	2500					
	3500					
	4000					
	4600					
	5000					
				BORE TERMINAT	TED AT 2.4 M	
	5500					

					BH04						
1	Clie	int	:	VICTORIAN PLANNING A	UTHORITY		Coords				
	Pro	jec	et:	CRAIGIEBURN WEST PS	P	1	1.1				
				DANDO TERRIER DRILL ROTARY AUGER	RIG		Bearing R.L. SE				
	Fluid			Nil		T	Logged	i by: SN			
1.					Soil 🔅 Rock Weathering Frac. Spacing		Date: n Samp	12/12/18 bling and Insitu Testing			
IRL	Depth (mm)		GraphicLog	Material Description		0.5	TYPE ROD%	Test Results and Comments			
		E			WN/ BROWN SILTY CLAY (CH) STIFF, HP			1			
		1		GRADUAL REFUSAL							
	500										
						+					
	1000					1					
	-										
	1500	-									
	2000										
	1.1										
	2603	-				+					
111	11										
	3000	1									
		1	11								
	12	E.									
	3600	-				+					
		1									
	-										
	4000										
	1	1	11								
	1										
	4500										
		-	1								
		1									
	5000	-	1.								
		-									
_		5									
	EFOR	1	1		BORE TERMINATED AT 2.0 M	1	111				
	5500					-					
		1									
	1.1	-	14								
	6003		111								

		Bore Log														BH05														
	Clie	_	_	VICTORIAN PLANNING A		нс	R	TY				11			1	1				-	42			Coo	ords	5.				
				CRAIGIEBURN WEST PS DANDO TERRIER DRILL		2	_													_				Bea	min	0	-	Dip:		
	Drillin	ığ N		ROTARY AUGER	RIK	3															1	ī		R.L	SE	EE W	s		-	
e e	Fluid	É		N0	L			11			T	L		T	T	T	Ľ	E		T	T	ò	1	Dat	e:	d by	-	12/	SN 12/18	
1.0	10	1				So	nil			R	ock		4	We	at	he	rin	g	Fra	IC.	Spa	cin	9(n S	am	pling	and	linsit	u Tèsi	ting
RL	Depth (mm)		Graphic Log	Material Description	V Soft/V Loose	SoftLoose	SHITTANED	V Stift/V Dense	Very Low	Low	Medium	Very High	Extremely Hig	EW	MMM	SW	FS	FR	0.01	0.05	0.1	26	0.0	TYPE	ROD%	TR		Resul	tts and ants	d
		1		GREVISH BROWN CLAY MIXED YELLOWISH BRO	EY	SIL V/E	R	OWI	FI	RM	Y C	LA	Y	CH	1) 5	STI	IFF	E.	HP				1							
				SUDDEN REFUSAL						-	-			1	ł		F	H					+							
	500				2		-							2	1	-				+			+							
			11																											
							+							+	ł	ł				+			+						-	+
	1000																						-			1				
		1													l	l				1			1							
	1600	1													t											1				
-		111													+					+			+						-	-
		1	21																	1										
	2000		1																							1				
															+	ł				+			+						-	+
															1					-										
	2600		Ú												t					1			1							
		1					+				-				+								+			1 1 1			-	-
															-								-							
	3000	+																					1							
		1	3.																							-				
		10					+																+			1				-
	3600																			1										
		E																												
																					-									+
	4000		1																											
			1.																											
		111	31																											
	4500																													-
		Ľ																												
	5000														+	-					-		+							-
																							-							
	5500		2.		1	1 I 1 I	T T		BO	RE	TI	RM		AT	E	1	T	0.	5 M		1		T T	1						
	4500																													
		E H																											-	-
	6000																													
1.00		11.5	1.11		1.		1	1 6	1		1	1		1	1	1	1	1	-	1	1		1	1	1 1	-			- 1	10.0

				strata			BH06							
	Clie	nt	:	VICTORIAN PLANNING A	UTHORITY			Coords						
	Pro	jeo	et:	CRAIGIEBURN WEST PS DANDO TERRIER DRILL	P			Dución	g: Dip;					
11	Drillin	ığ İ	Met	ROTARY AUGER	RIG.			Bearin R.L. SE	EE WS					
÷÷	Fluid			Ni	I		TIT	Logged Date:	d by: SN 12/12/18					
		-			Soil 🔅 F	Rock Weathering Frac.	Spacing		pling and Insitu Testing					
RL	Depth (mm)		Graphic Log	Material Description	V Soft/V Loose Soft/Loose Firm/M Dense Stiff/Dense V Stiff/V Dense Ex Low Very Low		0.1	TYPE ROD%	Test Results and Comments					
				GREVISH BROWN CLAY MIXED YELLOWISH BRO	T SILT (ML) HIRI	TY CLAY (CH) STIFF, HP								
		1		SUDDEN REFUSAL			-							
	500													
			11											
		5												
	1000		11											
11		E.												
	1500	Ľ.												
111	1500													
		5												
			C1											
	2000	-												
			11											
		1	51											
	2600	-												
	11	1												
		1												
	3000	-												
111		1	31											
		2												
	3609													
		1												
	-	i.	1											
	4000		j.											
		1												
	1.1													
	4500	-												
		-	27											
		1												
	5000	-	0.1											
		-												
		1	4											
	5500	-			BOR	E TERMINATED AT 0.3 M	100							
		-												
		i. TT												
	6000													
1.1.1	Surg	11.	1.1				4 4 4							

4	E		strata		Bore	ВН07						
	Drill Ty Drilling	ect: /pe: j Met	VICTORIAN PLANNING A CRAIGIEBURN WEST PSI DANDO TERRIER DRILL I ROTARY AUGER					Coords Bearing R.L. SE	EWS			
	Fluid		Ni		Rock V	Logged Date: (n Samp	by: SN 12/12/18 ling and Insitu Testing					
RL	Depth (mm)	Graphic Log		V Soft/V Loose Soft/Loose Firm/M Dense Stift/Dense Ex Low Very Low	Medium High Very High Extremely High	HW NWW FRS FRS	0.05 0.15	TYPE ROD%	Test Results and Comments			
			GREVISH BROWN CLAYE BROWN SILTY CLAY (CH		M.LP							
	500											
	1000		TRENDING YELLOWISH	BOWN/BROWN	SILTY CLA	Y (CH) FIRM	I, MP					
	1500		TRENDING CLAYEY SILT	(ML), FIRM EP								
			GRADUAL REFUSAL ON		STONE							
	2000											
	2600											
	3000											
	3600											
	4000											
	4600											
	5000											
	5600			BOR	ETERMIN	ATED AT 1.8	M					
	6003											

				strata				В	lor	e l	Lo	BH08											
	Clie	_	_	VICTORIAN PLANNING A	_	RITY							45				Cool	rds	3				
	Pro	jec	et:	CRAIGIEBURN WEST PS DANDO TERRIER DRILL	P												Bearing: Dip:						
	Drillin	Drilling Met ROTARY AUGER															R.L:	SEE					
÷E	Fluid		-	Nil	1				TT						I T.I	5	Logg	ged t I:	by:	SN 12/12/			
1.0					So		1	Roci	¢	W	eat	herir	ng	Fra	: Spa	cing			ng and	i Insitu T			
RL	Depth (mm)		Graphic Log	Material Description	V Soft/V Loose Soft/Loose	V Stiff/Dense	Very Low	Medium	Very High Extremely Herb	EW	MM	SW	FR	0.01	0.05	0.5	TYPE	KOD%		Results a			
		1		GREVISH BROWN CLAY MIXED YELLOWISH BRO	WN/B	ROW:	SIL	TY I	CLAY	(CI	H) S	TIF	F,	HP						-			
				SUDDEN REFUSAL							-		-										
	500																						
	-										+	H	H			+							
		1																					
	1000																						
												$\left \right $	F			-							
	1700	1	1																				
	1600												t							-			
		5																					
	2000	-	2.					-					F			-				_			
		111																					
		1	31								+		t										
	2600	1																					
		1											Ľ										
-		5																					
	3000	-																					
	1	C.	3.										t										
		Ę																					
	3609																						
_													f			-							
		12	1																				
	4000												Ľ										
	4500	1																					
		111	11																				
11		1											t										
	5000	-																					
													ľ										
		1											ł										
	5500				111	110	BOF	RET	ERM	NA	TEC	AT	0.	5 M			111	1					
	1500	H																					
		5	1																				
	6000		111										1										

	E	strata Bore Log														вноя						
	Clie	_	_	/ICTORIAN PLANNING A							-1			11	11	Cool	ds	-				
1				CRAIGIEBURN WEST PS		_						_		_		Bear	ino.	Dip;	-			
	Drillin	g Me	et F	ROTARY AUGER	-								_			R.L	SEE	WS				
	Fluid	1	ť	NGI								L		LT.	ĊT.	Date		12/1	N 2/18			
	1.5				Soil	**		ock		Wea	ther	ing	Fra	c. Spa	scing	(n Sa	mpling) and Insitu	Testing			
1	Depth (mm)	and for being	Circle in the second	Material Description	V Soft/V Loose SofVLoose Firm/M Danse Stift/Dense V Stift/Dense	x Low	Will Mile	Medium	stremely High	~~~	NN	0.00	10	0.05	6	TypE	w.np	Test Result				
R	Δ.	0		SREYISH BROWN CLAY	EY SILT (M	μp Li Fl	RM	≥µp LLP	×ш	ΠŦ.	ZIN	ШĒ	6	00	0.5		2	Comme	nts.			
-				MIXED YELLOWISH BR	1000				VIC	HIS	TIFE	- 14	P									
	500						Ϊ	Ĩ	ĨĬ	ĨĨ												
	300												÷.									
													-									
	1000																					
				RENDING FIRM, GRADU	JAL REFUS	AL																
	1600					****							÷									
													1									
			ľ																			
	2000		ł										-									
	2600	1																				
	3000		Ţ																			
	3000	-	ľ																			
		5	1																-			
	3500	2																				
111	1664																					
		2										-										
	4000																					
	11	-																				
	4600	-	-																			
		2																				
	12																					
	5000																					
			1										t.									
	5600				IIIII	BC	RE	TER	MIN	ATE	DA	T 1.	1 M	11	on		11					
	6000																					

			strata	BH10	
	Clier	it:	VICTORIAN PLANNING A	UTHORITY	Coords
			CRAIGIEBURN WEST PS DANDO TERRIER DRILL		Designed Date
11	Drilling	Met	ROTARY AUGER	RIG	Bearing: Dip: R.L. SEE WS
÷.	Fluid	1.	Ni		Logged by: SN Date: 12/12/18
		П		Soil 🔆 Rock Weathering Frac. Spacin	g (n Sampling and Insitu Testing
RL	Depth (mm)	Graphic Log	Material Description		G Comments
			GREVISH BROWN CLAY	EY SILT (ME):FIRM, LP	
	500		MIXED YELLOWISH BR GRADUAL REFUSAL	DWN/GREY SILTY CLAY (CH) STIFF, HP	
	1000	3			
	1600				
	2000				
	2600				
	3000				
	3600				
	4000				
	4600				
	5000				
	5500			BORE TERMINATED AT 0.8 M	
	5500				

	Ē		strata	BH11									
	Clie	_	VICTORIAN PLANNING A	Contraction of the second second		Coords							
	Drill T	ype:	CRAIGIEBURN WEST PS DANDO TERRIER DRILL ROTARY AUGER Nil	RIG	1000	Bearing: Dip: R.L: SEE WS							
RL	Depth (mm)	Graphic Log	Material Description	V Soft/V Loose SoftLoose Firm/M Dense Stiff/Dense V Stiff/Dense Ex Low Very Low	Leaver Hagh Hagh Extremely High Haw Haw Haw Haw Color	g (n Sampling and Insitu Testing u S Test Results and Comments							
Ĩ		-	GREVISH BROWN CLAY BROWN SILTY CLAY (C	EY SILT (MERHI	IM, LP								
	500												
	1000												
			TRENDING YELLOWISH GRADUAL REFUSAL ON	BROWN/BROWN	SILTY CLAY (CH) FIRM, MP								
	1500		GRADUAL REPUSAL ON										
	2000												
	3000												
	3600												
	4000												
	4600												
	5000												
	5600			BOF	RE TERMINATED AT 1.8 M								

		estrata Bore Log															BH12													
1	Clie	ent	:	VICTORIAN PLANNING A	UT	нс	RI	TY		-						1	-	1	=		1			Cos	ord	5				
				CRAIGIEBURN WEST PS DANDO TERRIER DRILL		-	_				_		_	_		_	_	_	_		_		1	0		-		Dip		1
	Drilli	ng I		ROTARY AUGER	RIG	3															-	ī		Bearing: R.L. SEE WS Logged by					-	
	Fluid N0														Log Dat		d by	-		SN 12/18	-									
1.0	11	-			1	So	ől		8	R	ock	1		W	eal	the	erin	ŋg	Ft	ac.	Spa	acin				pling	and		u Test	
RL	Depth (mm)		Graphic Log	Material Description	V Soft/V Loose	SoftLoose	Suff/Dense	V Stiff/V Dense	Very Low	Low	Medium	Vary Hinh	Extremely High	EW	AMAN MAN	ININ	AND I	24	10.01	200	0.10		0.0	TYPE	ROD%	T		Resu	lts and ants	a
		3	1	GREVISH BROWN CLAY YELLOWISH BROWN/ SI	LT	YC	LA	Y (X	H)	S	TIF!	P F,	HP		1	1	t	1		1			1	t						
_				GRADUAL REFUSAL											+	+	+						+	ł				-	-	
	500								ě								1	t						t						
-												+			+	+	t						+					-	1	
		E										-			-	-	+				-		-					-		
	1000	E						1																						
-		1					-	1000				+				-	1	-			-									
	1500	1													-	-	-	1					-							
																		l						l						
		1					+					+			+	+	+	ł			ł	-	+	ł			-			-
	2000																	I						L						
	2000	11	ti.									t				1		t			t									
	-						-					+				+		ł					+				-			
																		t						l						
-	2600	┝										+			+	+	ł	ł			ł		+	ł				-	-	
		Ľ,													1	1	1	t					1	1						
	3000	-					+					+			+	+	+	+			ł		+	ł		-	-	-	-	
		5	2.												1	1	1	l					1							
	1.2	i.																												
	3600	-					+					+			+	+		ł			+		+	ł					-	-
		1						1																						
																												1		
	4000							1																				-		
																	1													
-							-											-			-									-
	4600	-																												
																	1													
		1					+				$\ $	-				-	-	+			+			I					-	
	5000	-						1																						
		1						1																				-		
	-	1			L		1		во	RF	T	ER	MIP	A	TE	D	AT	0	7.0				1	1	U					
	5500	-				П	T			Í	Í				Ĩ	Ĩ	I	Í	ľ	1	1		1	1	1					
								1																						
	6000																													

			strata			В	ore	L	og							BI	H13
	Clien	_	VICTORIAN PLANNING A	_	Ý			1.1					41	Co	ords	5	
			CRAIGIEBURN WEST PS DANDO TERRIER DRILL		-										-	-	Die
111			ROTARY AUGER	RIG								-		R.		EE WS	
1.0	Fluid		Nil												gged te:	i by	SN 12/12/18
1.0		П		Soil	8	Rock		Wea	theri	ng	Fra	c. Sp	acing			oling an	d Insitu Testin
1	Depth (mm)	Graphic Log	Material Description	V Soft/V Loose Soft/Loose Firm/M Dense Stift/Dense	Stiff/ Dense x Low ery Low	ow edium	gn ery High xtremely High		N	-	10	0.05	0.5	201	ROD%		Results and
R	0	0	GREYISH BROWN CLAYS	PIDE PIDE I	PHP MLI.EIF	SM. L	Р	11 H	2 IN	с <u>и</u>	0	00	0	-	-12	(Comments
			YELLOWISH BROWN/ SI	LTY CLAY	((CH)	STIF	F. HP			1	1					1	
-					2000					-	-			H			
	500																
1								H		-	-			H		-	
					2000												
	1000																
			INCREASING MOISTURE	CONTEN	1,80		FIRM										
	1600				2000												
					20000			H		1				H			
					2000												
111	2000															-	
	11		LIGHT YELLOWISH BRO	WN/ SILT	YCLA	YICH	I) SOF	ΤH	P					Π			
11.1														H			
					20000												
	2600	-0												H		-	
					20000												
								H			1		1	H	H		
	3000					-											
11.7					20000									H			
					2000												
111	3500				20000			H						H			
					10000												
	4000																
	4600																
					2000					+							
	5000																
-											-						
	5500				BO	RET	ERMIN	ATE	DA	Т 3.	M	11		11	11		
	5500	1															
									$\ $								
	6000																

		-	strata		Bore Lo	og		BH14
	Clie		VICTORIAN PLANNING A	A REAL PROPERTY AND A REAL			Coords	5
	Proj	ect:	CRAIGIEBURN WEST PS	P			0	g: Dip:
-	Drillin		L ROTARY AUGER	RIG				EE WS
÷E	Fluid	- 1-	Ni				Loggei Date:	d by: SN 12/12/18
1.0		-		Soil 🔆 F		thering Frac. Spaci		pling and Insitu Testing
	3	8	Material Description	V Soft/V Loose SoftLoose Firm/M Dense Stift/Dense V Stift/ Dense Ex Low Very Low	Medium High Very High Extremely High EW			
	um) r	HICLO		M Dense M Dense MV D	HgH			1111111
Ę.	Depth (mm)	Graphic Lon		V Sol	Very Very Extre	SW S	0.5 TYPE ROD%	Test Results and Comments
			GREVISH BROWN CLAY	EY SILT (ML) FIRI	M, LP			Command
			MIXED YELLOWISH BR	OWN/GREY SILT	Y CLAY (CH) S	TIFE, HP		
	500		GRADUAL REFUSAL		ШШ			
	500							
	1000							
	1500							
	1000							
		5						
		Ē						
	2000	2						
	2500							
	3000	-						
	1	Ξ						
-		5						
		£ ().						
1	3600	-						
		5						
	4000							
	4500							
		5						
	5000							
				BOR	E TERMINATE	D AT 1.5 M		
	5500	-						
	6000							

	E			strata				в	ore	L	og						вн	15	
	Clie	-	-	VICTORIAN PLANNING	AND A REAL PROPERTY.	TY		(_] `							Coo	rds	-		
	Drill 1	g N	e:	CRAIGIEBURN WEST P DANDO TERRIER DRILL ROTARY AUGER Nil											R.L	ged	E WS	D/p: SN 12/12/	18
RL	Depth (mm)		GraphicLog	Material Description	V Soft/V Loose 0 SoftLoose 0 Firm/M Danse 0 Stift/Danse	V Stiff/V Dense	Very Low	Medium 20	Very High Extremely High	EW HW	MM V	0.01	0.05	0.5	TYPE (0)	ampl %00%	Test	Results a	and
				UNCONTROLLED FILL (MAINLY C	OMF	RIS	ING	GRE	YCL	AYE	SILT	Y GF	RAVE	LS (C	SM)			
	500			GREVISH BROWN CLAY	EY SILT (ML)	IRN	1.4	P					11					
	350			BROWN SILTY CLAY (C GRADUAL REFUSAL	H) STIFF.	H													
	1000																		
	1600																		
	2000																		
	2603																		
	3000																		
		11/11/11																	
	3600	1.101.11																	
	4000																		
	4600																		
	5000																		
	5600					B	OR	TE	RMIN		DAT	1.4 M							
	6000					000000000000000000000000000000000000000													

		2	strata	Bore Log	BH16
	Drill T	ect: ype:	VICTORIAN PLANNING / CRAIGIEBURN WEST P DANDO TERRIER DRILL ROTARY AUGER Nil	SP RIG	Coords Bearing: Dip: R.L: SEE WS Logged by: SN Date: 12/12/18
RL	Depth (mm)	Graphic Log	Material Description	V Safity Loose SoftLoose SaftLoose SaftDansa SaftDansa V Safty Dense V Safty Dense Very High High High High High High NW FS Coli High Coli Coli Coli Coli Coli Coli Coli Coli	ng (n Sampling and Insitu Testing 비행 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다
	500		BROWN CLAYEY SILT (BROWN SILTY CLAY (C	(ME) F H V(H), LES	
	1000		TRENDING GREY SILTY GRADUAL REFUSAL	CLAY (CH) ERM, HP	
	2000				
	2500				
	3000				
	3500				
	4500				
	5000				
	5600			BORE TERMINATED AT 1.2M	

	E			strata				-				1	B	c	or	e	•	L	c	2	7														в	н	7		T		
	Clie Pro	-	_	VICTORIAN PLANNING A CRAIGIEBURN WEST PS	-	гн	OF	RIT	Y												1	-						-		C	00	ord	IS.								
	Drill	Typ 1g N	e:	DANDO TERRIER DRILL ROTARY AUGER NII							1	T	1							1	I	1	1	1						RLD	og	ge e:	ig: El	E V			Di	S	N 2/	18	3
RL	Depth (mm)		GraphicLog		V Soft/V Loose	SoftLoose	Firm/M Dense	Stift/Dense	V Stff/V Dense	Viery Low	The second second	Reduce	INEW INTE	Ндн	Very High	Extremely High	EW	/ea	AMM	ne MS		20		Fri Loro	30		0.1		0.5			ROD%			es	16		ut	5.8	ane	d
				GREVISH BROWN CLAY BROWN SILTY CLAY (CH SUDDEN REFUSAL	ΕY	S		F-(I	VIL.	H	RI	<u>M.</u>	Ì	P	1				1			1	1			1												_		_	1
	500			SUBDER REI USRE																																					
			12																																						
	1000																					1	1																		-
	1600																																								
		1.																																							
	2000		2.																																						
		1111																																							1
	2600	1																																							
		111																																							
	3000	1																																							-
		111																																							
	3600	1																																							
	4000	100																																							
	HLOS	1111																				ļ																			-
	4500	1	1																																						
	5000																																								
		100			1					BC		E		EF	RM			T			47		5		1																1
	5500											Ī	Î								Ì	I	Ĩ						1												
	6003										-	1																											ł		

	E		strata				в	ore	L	og	7						BH18	
	Drill Typ	ct: be: Met	VICTORIAN PLANNING A CRAIGIEBURN WEST PS DANDO TERRIER DRILL ROTARY AUGER NI	P	NTY										Be R.			
RL	Depth (mm)	GraphicLog	Material Description	V Soft/V Loose Soft/Loose 00 Soft/Loose 00 Firm/M Dense 00	Stiff/Dense V Stiff/V Dense Ex Low	Very Low	Medium	Hgh Very High Extremely High	We	athe MW	ning Mark	Fra LO:O	c. Spi 0.0			Sam %00X	pling and Insitu Test Test Results and Comments	Ì
			GREYISH BROWN CLAY BROWN SILTY CLAY (C	EY SILT	(ML)	FIRI	M.L	P										
	500																	
	1000		TRENDING LIGHT BROW	/N SAN	DY CL	AY (CH)), FIRM	4. M	P								
	1500																	
	2900																	
	2600		TRENDING YELLOWISH	BROWN	I CLA	YEY	GR	AVEL	LYS	SANI	D (S	G), É	ENS	E, L	P, N	IEAF	R REFUSAL	
	3000																	
	4000																	
	4500																	
	5000																	
	5500					SOR		ERMI	VAT	ED /	413	OM						

				strata								В	30	ore	9	L	c	00	7												BH	119			
	Clie	ent	:	VICTORIAN PLANNING A	UT	н	DR	UT	Ý						1	1		-	1	1							Ca	200	ds		-				11
	Drill	Тур	e:	CRAIGIEBURN WEST PS DANDO TERRIER DRILL		G.		_				_		_				_	_		_	_						an				D	p:		
	Fluid		Met	ROTARY AUGER																	1						Lo		ed	E V by		1	SI 2/12		_
1.0	11				L	S	jā]	-	8		R	oci	ĸ		ľ	Ne	ati	1E	fir	g	F	rac	2.5	ŝpa	icir	ng i	(0	Sa	mp	ling	and	d line	situ	Tes	ting
RL	Depth (mm)		Graphic Log	and the second sec	V Soft/V Loose	SaftLoose	Firm/M Dense	Stiff/Dense	Ex Low	Very Low	Low	Medium	Hgh	Very High Extremely Herh	N/C	HW	MW	SW	54	ER .	10.01		0.05	0.1		0.5	-	TYPE	NAU N	т			uits men		d
ĺ.	fint	e. E		GREVISH BROWN CLAY BROWN SILTY CLAY (CH	ΕY	SI	-1	-{N		HF	N5	1.L	P	-	ł	-	-	┝	┝	ł	+						-		+	-		t		-	Ť
		1		SUDDEN REFUSAL	Í				1000													1													
	500								00000																								-	-	
		1													ł				-			1				-			+					-	
															t			t	t	ĺ	t						1	1							
	1000	-	T					-	10000								-			ł				H					ł			-			-
	Π.	1													l					l									l						
		1													ł					ł									ł						+
	1600														I				1																
-		1	1					-							ł				ŀ	ł								1	t	1					
	1-1	1																																	
	2000	-	1						1000						ł				ŀ	ŀ									t						
															I																				
	11								-	1					ł				ŀ	ł		ŀ						1	t						
	2600	-																																	
	2000	F													ł		ŀ		ŀ	t									ł						
	11																																		
		1													ł			ŀ	ŀ	t		ŀ						1	t	1		F			
	3000	-																	-			-													
		1	5		ŀ										ł				ŀ	t									t						
	1.	-																																	
	3500				t										ł			ŀ	ł	t								1	t						t
	1.5								0000													1													
	1								10000						I																				
	4000								10000																										
			11							1					ľ					ľ															
									10000																										-
									1000																										
	4600														I																				
									1000						I																				
									10000																										-
	5000	L							10000																										
									20000																										
									10000				l		l																				t
	5500	H			L		1	1	E	0	RI	ET	E	RM	N	AT	E		AT	0	81	N	ľ			1	1	T	1						-
									10000																										1
									10000	-						-														-					+
	1.1								1000						l																				
	6000	1			1	11	1					11			1	1			1	1	1						1		1						

Geolechnical Terms and Symbols

The following information is intended to assist in the interpretation of terms and symbols used in geotechnical borehole logs, test pit logs and reports issued by or for the Queensland Department of Transport and Main Roads (TMR). More detailed information relating to specific test methods is available in the TMR Materials Testing Manual (MTM) and the relevant Australian Standards.

Soil Descriptions

Description and Classification of Solis for Geotechnical Purposes: Refer to AS1726-1993 (Appendix A). The following chart (adapted from AS1726-1993, Appendix A, Table A1) is based on the Unified Soli Classification System (USCS).

Majo	or Divisions	Particie size mm	USCS Group Symbol	Typical Names		Labo	ratory Cla	assilloation	
1	BOULDERS	200		117	% < 0.075 mm (2)	Plasticity of fine fraction	$C_{a} = \frac{D_{ab}}{D_{ab}}$	$C_r = \frac{(D_m)^2}{(D_m)(D_m)}$	NOTES
Î	COBBLES		1.12	1					
than 0.075mm)		63	GW	Well graded gravels and gravel-sand mixtures, little or no fines	0-5	17. 1	*4	Between 1 and 3	(1) Identify fines by the method give
2	GRAVELS (more than	coarse 20	GP	Poorly graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	Biotanio	-		comply with above	for fine-grained solis.
63 mm ki	half of coarse	medium	GM	Sity gravels, gravel-sand-sit mixtures (1)	12-50	Below 'A' line or Pi+4	-		
COARSE GRANED SOLS that as then 63 mm k is	fraction is larger than 2.36 mm)	6 fne 2.36	GC	Clayey gravels, gravel-sand- clay mixtures (1)	D-5 D-5 12-50 12-50 D-5	Above 'A' line and PI>7			(2) Borderline
- E	SANDS		sw	Weil graded sands and graveity sands, little or no fines	D-5 D-5	194	>6	Between 1 and 3	classifications occur when the percentage of fines (fraction
than helf d	(more than haif of coarse	0.6	SP	Poorly graded sands and graveity sands, little or no fines	0-5 0-5 12-50 12-50	1		comply with above	smaller than 0.075 mm size) is greater than 5% and less
more th	fraction is smaller than 2.36 mm)	medium 0.2	SM	Silty sands, sand silt mixtures (1)	8 12-50	Below 'A' line or PI<4	-	-	than 12%. Borderline
•		fine 0.075	sc	Clayey sands, sand-clay mixtures (1)	5	Above 'A' line and PI>7	-		classifications require the use of SP-SM, GW- GC.
1 0075 mm	Ē.		ML	Inorganic sits, very fine sands, rock flour, sity or clayey fine sands or clayey sits with slight plasticity	deetfcation		classificat	ticity Chai ion of fine gra	ined solls
SOLS mm is smaller than	SILTS & CLA (Liquid Limit:	- 1. H.	CL Cl	inorganic clays of low to medium plasticity, gravely clays, sandy clays, sity clays, lean clays	a common			in of coarse gr	arned sous.
SOLS			OL	Organic sits and clays of low plasticity	possing a	1000		1	100
E CRAINED SOLLS less than 63 mm b 1			MH	inorganic sits, mic-aceous or diato-maceous fine sands or sits, elastic sits	Plastic Index (%)			1	and manufa
material le	SILTS & CLA (Liquid Limit		CH	inorganic clays of high plasticity, fat clays	0		1	7 MIL	я
3			он	Organic sits and clays of high plasticity	gradation 4	Zau		1809.	
more than half	HIGHLY OR	GANIC	PT	Peat and other highly organic soils	Use the gr	0 18 28	so es	uid Limit (%)	27 48 46 528

Geotechnical Terms and Symbols

Soil Colour: is described in the moist condition using black, white, grey, red, brown, orange, yellow, green or blue. Borderline cases can be described as a combination of two colours, with the weaker followed by the stronger. Modifiers such as pale, dark or motified, can be used as necessary. Where colour consists of a primary colour with secondary motifing, it should be described as follows: (Primary) motified (Secondary). Refer to AS 1726-1993, A2.4 and A3.3.

Soil Moleture Condition: is based on the appearance and feel of soil. Refer to AS 1726-1993, A2.5.

Term	Decoription
Dry	Cohesive soils; hand and fitable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.
Moist	Soil feels cool, darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	Soil feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.

Consistency of Cohesive Solis: May be estimated using simple field tests, or described in terms of a strength scale. In the field, the undrained shear strength (sc) can be assessed using a simple field tool appropriate for cohesive solis, in conjunction with the relevant calibration. Refer to AS 1726-1993, Table A4.

	Consistency -	Essentially	Cohecive	s Solis		Soll Parti	ole Sizes
Term	Field Guide	Symbol	SPT FNP Value	Undrained Shear Strength G. (kPa)	Unconfined Compressive Strength q, (kPa)	Term	Size Range
Very soft	Oozes between fingers when squeezed in hand.	VS	0-2	<12	<25	BOULDERS	>200 mm 63-200 mm
Soft	Easily moulded with fingers.	s	24	12-25	25-50	Coarse GRAVEL Medium GRAVEL	20-63 mm 6-20 mm
Fim-	Can be moulded by strong pressure of fingers.	P	4-9	25-50	50-100	Fine GRAVEL Coarse SAND Medium SAND	2.36-6 mm 0.6-2.36 mm 0.2-0.6 mm
SUT	and the second	St	8-15	50-100	100-200	Fine SAND	0.075-0.2 mm
Very stiff	Not possible to mould with fingers.	VSt	15-30	100-200	200-400	SILT CLAY	0.002-0.075 mm <0.002 mm
Hard	Can be indented with difficulty by thumb nail.	н	>30	>200	>400		

Note: SPT - N to q, correlation from Terzaghi and Peck, 1967. (General guide only).

Consistency of Non-Cohesive Soils: Is described in terms of the density index, as defined in AS 1289.0-2000. This can be assessed using a field tool appropriate for non-cohesive soils, in conjunction with the relevant calibration. Refer to AS 1725-1993, Table AS; BS5930-1999, p117.

		Consistency - Essentially N	on-Cohesive Soils	
Term	Symbol	SPT N Value	Field Guide	Density Index (%)
Very loose	VL	0-4	Foot imprints readily	0-15
Loose	L	4-10	Shovels Easly	15-35
Medium dense	MD	10-30	Shaveling difficult	35-65
Dense	D	30-50	Pick required	65-85
Very dense	VD	>50	Picking difficult	85-100

Standard Penetration Test (SPT): Refer to: AS 1289.5.3.1-2004. Example report formats for SPT results are shown below:

Test Report	Penetration Resistance (N)	Explanation / Comment
4, 7, 11	N=18	Full penetration; N is reported on engineering borehole log
18, 27, 32	N-59	Full penetration; N is reported on engineering borehole log
4, 18, 30/15 mm	N is not reported	30 blows causes less than 100 mm penetration (34 Interval) - test discontinued
30/60 mm	N is not reported	30 blows causes less than 100 mm penetration (14 interval) - test discontinued
DW .	Net	Rod weight only causes full penetration
hw	N<1	Hammer and rod weight only causes full penetration
hb	N is not reported	Hammer bouncing for 5 consecutive blows with no measurable penetration - test discontinued

Geotechnical Terms and Symbols

Rock Descriptions

Refer to AS 1726-1993 (Appendix A3.3) for the description and classification of rock material composition, including: (a) Rock type (Table A6, (a) and (b))

- a) mock gpc (rable / a
- (b) Grain size
- (c) Texture and fabric
- (d) Colour (describe as per soil).

The condition of a rock material refers to its weathering characteristics, strength characteristics and rock mass properties. Refer to AS 1726-1993 (Appendix A3 Tables A8, A9 and A10).

Weathering Condition (Degree of Weathering):

The degree of weathering is a continuum from fresh rock to soil. Boundaries between weathering grades may be abrupt or gradational.

		Rook Material Weathering Classification
Weathering Grade	Symbol	Definition
Residual Soli	RS	Soli-like material developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the material has not been significantly transported.
Extremely Weathered Rock	WX	Rock is weathered to such an extent that it has 'soll' properties, i.e. it either disintegrates or can be remoulded in water, but substance tabric and rock structure still recognisable.
Highly Weathered Rock	HW	Strong discolouration is evident throughout the rock mass, often with significant change in the constituent minerals. The intact rock strength is generally much weaker than that of the fresh rock.
Moderately Weathered Rock	MN	Modest discolouration is evident throughout the rock fabric, often with some change in the constituent minerals. The intact rock strength is usually noticeably weaker than that of the fresh rock.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.
Notes:		

NOTES:

1. Minor variations within broader weathering grade zones will be noted on the engineering borehole logs.

2. Extremely weathered rock is described in terms of soil engineering properties.

3. Weathering may be pervasive throughout the rock mass, or may penetrate inwards from discontinuities to some extent.

The 'Distinctly Weathered (DW)' class as defined in AS 1726-1993 is divided to incorporate HW and MW in the above table. The symbol DW should not be used.

Strength Condition (Intact Rock Strength):

Strength of Rook Material

Term	Symbol	Point I Index ((MPa)	Field Guide to Strength
Extremely Low	EL	s0.03		Easily remoulded by hand to a material with soil properties.
Very Low	VL	>0.03	s0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	>0.1	s0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	м	>0.3	s1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	н	>1	\$3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	>3	\$10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material, rock rings under hammer.

HUUPE.

 These terms refer to the strength of the rock material and not to the strength of the rock mass which may be considerably weaker due to the effect of rock defects.

2. Anisotropy of rock material samples may affect the field assessment of strength.

Aniso	tropio Fabrio	Roughness (e.g. Planar, Smooth Is abbreviated PI / Sm) Class							Other		
BED	Bedding	1.000		1.1	Rough or irregular (Ro)			Cly	Clay		
FOL	Foliation	Stepped (Stp)			Smooth (Sm) II			Fe	tron		
LIN	Mineral lineation	A COLUMN TO A C			Slickensided (SI) III			Co	Coal		
Defect Type		the second second in			Rough (Ro) IV			Carb	Carbonaceous		
P	Lamination Parting	Undulating (Un)		n)	Smooth (Sm) V			Staf	Soil Infil Zone		
BP	Bedding Parting	and the second second			Slickensided (Si) VI			Qz	Guartz.		
FP	Cleavage / Foliation Parting		-		Rough (Ro) VII Smooth (Sm) VIII			GA	Calcite		
J, JS	Joint, Joints	Planar (PI)					Chi	Chiorite		
sz	Sheared Zone	1	1.1	- 11 st	Slickensided (SI) DX			Py	Pyrite		
cz	Crushed Zone	Apertur		infiling				inc	intersecting		
BZ	Broken Zone	Closed	CD	No visible	coating or infil	Clean	Cn	Inc	Incipient		
HFZ	Highly Fractured Zone	Open	OP	Surfaces	discoloured by mineral/s	Stain	St	Di	Drilling Induced		
AZ	Alteration Zone	Filed	FL.	Visible mi	neral or soil infill <1mm	Veneer	Vr	н	Horizontal		
VN	Vein	Tight	T	Visible mi	neral or soil infil >1mm	Coating	Ct	N.	Vertical		

Note: Describe 'Zones' and 'Coatings' in terms of composition and thickness (mm).

Discontinuity Spacing: On the geotechnical borehole log, a graphical representation of defect spacing vs depth is shown. This representation takes into account all the natural rock defects occurring within a given depth interval, excluding breaks induced by the drilling / handling of core. Refer to AS 1726-1993, BSS930-1999.

Defect Spacing			Bedding This (Sedimentary Rock :		Defect Spacing in 3D			
8paoing/Width (mm)	Descriptor	Symbol	Descriptor	Spaoing/Width (mm)	Term	Description		
		1	Thinly Laminated	< 6	Blocky	Equidimensional		
<20	Extremely Close	EC	Thickly Laminated	6-20 Tabula		Thickness much less than length or width		
20 - 60	Very Close	VC	Very Thinly Bedded	20 - 60	Columnar	Height much greater than cross section		
60 - 200	Close	c	Thinly Bedded	60-200	<u></u>			
200 - 600	Medium	M	Medium Bedded	200 - 600	Defect Persistence			
600 - 2000	Wide	W	Thickly Bedded	600 - 2000	11.1.1	(areal extent)		
2000 - 6000	Very Wide	VW	Very Thickly Bedded	> 2000	-	and and a state of a state of the		
>6000	Extremely Wide	EW		1 · · · · · · · · · · · · · · · · · · ·	Trace lengt	Trace length of defect given in metres		

Symbols

The 1st below provides an explanation of terms and symbols used on the geotechnical borehole, test pit and penetrometer logs.

		Test Res	uits		Test Symbols
PL	Pl Plasticity Index		Effective Cohesion	DCP	Dynamic Cone Penetrometer
ш	Liquid Limit	C,	Undrained Cohesion	SPT	Standard Penetration Test
ш	Liquidity index	¢,	Residual Cohesion	CPTu	Cone Penetrometer (Plezocone) Test
DD	Dry Density	ų.	Effective Angle of Internal Friction	PANDA	Variable Energy DCP
WD	Wet Density	0,	Undrained Angle of Internal Friction	PP	Pocket Penetrometer Test
LS	Linear Shrinkage	ø.	Residual Angle of Internal Priction	U50	Undisturbed Sample 50 mm (nominal diameter)
MC	Moisture Content	с,	Coefficient of Consolidation	U100	Undisturbed Sample 100mm (nominal diameter)
OC	Organic Content	m,	Coefficient of Volume Compressibility	UCS	Uniaxial Compressive Strength
WPI	Weighted Plasticity Index	c.,,	Coefficient of Secondary Compression	Pm	Pressuremeter

		Test Resu		Test Symbols			
NLS	Weighted Linear Shrinkage	e	e Volds Ratio		Field Shear Vane		
DoS	Degree of Saturation	4.	Constant Volume Friction Angle	DST	Direct Shear Test		
APD	Apparent Particle Density	q/q.	Plezocone Tip Resistance (corrected / uncorrected)	PR	Penetration Rate		
S,	Undrained Shear Strength	q ₁	PANDA Cone Resistance	٨	Point Load Test (axial)		
Q.	Unconfined Compressive Strength	Lepen	Point Load Strength Index	D	Point Load Test (diametral)		
R	Total Core Recovery	RQD	Rock Quality Designation	L	Point Load Test (irregular lump)		

Appendix 3 Laboratory Results

Test Results - Atterberg Limits

ACN 31 105 704 078 13 Brock Street, Thomastown, VIC P 03 9464 4617 Email reception@grounds nce com a GS4690/1 Client: STRATA GEOSCIENCES AND ENVIRONMENTAL PT Job No. Project: **CRAIGIEBURN PSP** AR Report No. Location: Test Date: 18-Dec-18 . Sample identification BH2 (1000) @ 1.0m BH3 (1000) @ 1.0m BH13 (2500) @ 2.5m BH18 (2500) @ 2.5m Purchase order number Sample number #17 #18 #19 #20 Test methods AS1289 3.1.2 3.2.1 3.3.1 3.4.1 2.1.1 ATTERBERG LIMITS 64 75 89 73 Liguid Limit % Plastic Limit 20 22 25 20 % 44 53 64 53 Plasticity Index % Linear Shrinkage 10 9 10 10.5 % Curling/ Crumbling/ Cracking Cracking & Cracking & Cracking Cracking & Curling Curling Curling Curling Sample History Oven dried, Dry sieved Oven dried, Dry sieved Oven dried, Dry sieved Oven dried, Dry sieved Sample Description CLAY CLAY CLAY CLAY high plasticity high plasticity high plasticity high plasticity brown. brown. light brown. brown. Comments: Sampling Method Sampled by client, tested as received NATA Accredited Laboratory No. 15055 NATA mount Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/National Standards TECHNICAL Approved Signatory Chris Senserrick Date of issue 10/12/2019

GS018A/R V2 Nov 2018 App KC

EMERSON	DISPERSION	AS 1289 3.8.1
client:	STRATA GEOSCIENCES AND ENVIRONMENTAL PTY LTD (H	HOBART) job No. : GS4690/1
project:	CRAIGIEBURN PSP	date: 17/12/2018
location:		report No. AN
sample number:	#17	
sample identification	or BH2 @ 1.0	
		start time :
does the sample slake	x yes	7 sample swells 8 no swell
time dispersion comme	nces	
start : 8.00	▼	
end: 10.00	1 complete dispersion	n
	X 2 partial dispersion	
	no dispersion	
	Ţ	
	remoulded sample 3 dispersion	
time dispersion comme		
start :	no dispersion	
end:		
	calcite / gypsum present	
	_ ↓	
		4 present
		absent
	5 :1 water: soil mix	
	10 mins of vigorous shaking	5 disperses (remains cloudy)
		6 floculates (clear at surface)
water type:	distilled	
water temp :	20.0"	EMERSON CLASS NUMBER
description :	CLAY, high plasticity, brown	
		2
~	This document is issued in accordance with NATA's accreditation requirement	ents.
NATA	Accredited for compliance with ISO/IEC 17025 - Testing	her 1
V	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards.	Approved signature Chris Senserrick
TECHNICAL	NATA Accredited Laboratory No. 15055	Date: 19/12/2018

EMERSON	DISPERSION	AS 1289 3.8.1
client:	STRATA GEOSCIENCES AND ENVIRONMENTAL PTY LTD (I	HOBART) job No. : GS4690/1
project:	CRAIGIEBURN PSP	date: 17/12/2018
location:		report No. AO
sample number:	#18	
sample identification	or BH3 @ 1.0	
		start time :
does the sample slake	x yes	7 sample swells 8 no swell
time dispersion comme	nces	
start : 12.00	▼	
end: 14.00	1 complete dispersio	n
	X 2 partial dispersion	
	no dispersion	
	Ļ	
	remoulded sample 3 dispersion	
time dispersion comme	nces	
start :	no dispersion	
end:		
	calcite / gypsum present	
	¥	
		4 present
		absent
	5 :1 water: soil mix	
	10 mins of vigorous shaking	5 disperses (remains cloudy)
		6 floculates (clear at surface)
		. ,
water type:	distilled	
water temp : description :	20.0" CLAY, high plasticity, brown	EMERSON CLASS NUMBER
description .		2
~	This document is issued in accordance with NATA's accreditation requirement	ents.
NATA	Accredited for compliance with ISO/IEC 17025 - Testing	In a l
V	The results of the tests, calibrations and/or measurements included in this	Approved signature
	document are traceable to Australian / national standards. NATA Accredited Laboratory No. 15055	Chris Senserrick Date: 19/12/2018

EMERSON	DISPERSION	AS 1289 3.8.1
client:	STRATA GEOSCIENCES AND ENVIRONMENTAL PTY LTD (H	HOBART) job No. : GS4690/1
project:	CRAIGIEBURN PSP	date: 17/12/2018
location:		report No. AN
sample number:	#17	
sample identification	or BH2 @ 1.0	
		start time :
does the sample slake	x yes	7 sample swells 8 no swell
time dispersion comme	nces	
start : 8.00	▼	
end: 10.00	1 complete dispersion	n
	X 2 partial dispersion	
	no dispersion	
	Ţ	
	remoulded sample 3 dispersion	
time dispersion comme		
start :	no dispersion	
end:		
	calcite / gypsum present	
	_ ↓	
		4 present
		absent
	5 :1 water: soil mix	
	10 mins of vigorous shaking	5 disperses (remains cloudy)
		6 floculates (clear at surface)
water type:	distilled	
water temp :	20.0"	EMERSON CLASS NUMBER
description :	CLAY, high plasticity, brown	
		2
~	This document is issued in accordance with NATA's accreditation requirement	ents.
NATA	Accredited for compliance with ISO/IEC 17025 - Testing	her 1
V	The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards.	Approved signature Chris Senserrick
TECHNICAL	NATA Accredited Laboratory No. 15055	Date: 19/12/2018

EMERSON	N DISPERSION	S 1289 3.8.1
client:	STRATA GEOSCIENCES AND ENVIRONMENTAL PTY LTD (HO	BART) job No. : GS4690/1
project:	CRAIGIEBURN PSP	date: 17/12/2018
location:		report No. AP
sample number:	#19	
sample identificat	tior BH13 @ 2.5m	
		start time :
does the sample slake	e no X yes	7 sample swells 8 no swell
time dispersion comm	lences	
start : 12.00	▼	
end: 14.00	1 complete dispersion	
	X 2 partial dispersion	
	no dispersion	
	1	
	remoulded sample 3 dispersion	
time dispersion comm		
start :	no dispersion	
end:		
	calcite / gypsum present	
	↓	
	4 pi	resent
	al	osent
	5 :1 water: soil mix	
	10 mins of vigorous shaking 5 di	sperses (remains cloudy)
	6 fb	oculates (clear at surface)
water type:	distilled	
water temp :	20.0"	EMERSON CLASS NUMBER
description :	CLAY, high plasticity, light brown	
		2
^	This document is issued in accordance with NATA's accreditation requirements	
NATA	Accredited for compliance with ISO/IEC 17025 - Testing	1. 1
$\mathbf{\nabla}$		pproved signature
Source tends	NATA Accredited Laboratory No. 15055	late: 19/12/2018

Lient: STRATA GEOSCIENCES AND ENVIRONMENTAL PTY LTD (HOBART) job No. : GS4660/1 project: CRAIGIEBURN PSP date: 17/12/2018 bocation: - report No. AQ sample number: 28 sample dietification: BH18 @ 2.5m des the sample slake	EMERSON	DISPERSION	AS 1289 3.8.1
Action:	client:	STRATA GEOSCIENCES AND ENVIRONMENTAL PTY LTD (HC	DBART) job No. : GS4690/1
sample number: #20 sample identification BH19 @ 2.5m sample identification BH19 @ 2.5m the dopersion commences star: 12.00 en: 14.00 remotided sample emotided sample remotided sample remotided sample remotided sample remotided sample remotided sample remot	project:	CRAIGIEBURN PSP	date: 17/12/2018
sample identificator BH18 @ 2.5m	location:		report No. AQ
does the sample stake ist time: does the sample stake ist in a dispersion time dispersion commences ist in the sample start: 12.00 ist complete dispersion end: 14.00 ist complete dispersion remoulded sample ist dispersion remoulded sample ist dispersion ime dispersion ist dispersin <	sample number:	#20	
does the sample slake no no 7 simple swells time dispersion commenoes i i no midle atr: 12.02 1 oncluded dispersion it 14.00 i partial dispersion mediopersion commenoes i 2 partial dispersion mediopersion commenoes i dispersion start: i on dispersion ender dispersion dispersion time dispersion commenoes i dispersion start: i on dispersion idel / gypsum present i greant idel / gypsum present i greant idel / gypsum present i greant idel / gypsum present idepension greant	sample identification	or BH18 @ 2.5m	
Ime dispersion commences star: 12.00 end: 14.00 1 complete dispersion Ime dispersion commences star: end:			start time :
start: 12.00 in complete dispersion in dispersion in dispersion in o dispersion in dispersion	does the sample slake		
erd: 14.00	time dispersion comme	nces	
Image: Second		▼	
remoulded sample a dispersion uno dispersion	end: 14.00	1 complete dispersion	
remoulded sample ime dispersion commences start: end: calcite / gypsum present ime dispersion f present absent ime dispersion ime dispersion f disperses (remains cloudy) ime dispersion ime		X 2 partial dispersion	
time dispersion commences start : no dispersion end: calcite / gypsum present 4 present absent best f disperses (remains cloudy) 6 floculates (clear at surface) water type: distilled water temp: 20.0" <ld>description: <ld>CLAY, high plasticity, brown</ld></ld> This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this Approved signature Chris Senserrick		no dispersion	
time dispersion commences start : no dispersion end: calcite / gypsum present 4 present absent best f disperses (remains cloudy) 6 floculates (clear at surface) water type: distilled water temp: 20.0" <ld>description: <ld>CLAY, high plasticity, brown</ld></ld> This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this Approved signature Chris Senserrick		Ļ	
start : end: end: calcite / gypsum present start : end: calcite / gypsum present		remoulded sample 3 dispersion	
end: calcite / gypsum present f present absent f present absent f present absent f present absent f or inso d vigorous shaking f of inculates (clear at surface) water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown EMERSON CLASS NUMBER 2 This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this Approved signature document are traceable to Australian / national standards.	time dispersion comme	nces	
calcite / gypsum present 4 present absent best distilled twater type: distilled water type: distilled water type: distilled main control to the state of the	start :	no dispersion	
A present absent c absent c c foculates (clear at surface) c foculates (clear at surface) c	end:		
sister type: distilled water type: distilled water type: 20.0" description : CLAY, high plasticity, brown It is document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick		calcite / gypsum present	
sister type: distilled water type: distilled water type: 20.0" description : CLAY, high plasticity, brown It is document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick			
5:1 water: soil mix 10 mins of vigorous shaking 5 disperses (remains cloudy) 6 floculates (clear at surface) water type: distilled water temp: 20.0" description : CLAY, high plasticity, brown Image: Clay is the document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick Chris Senserrick		4 p	present
10 mins of vigorous shaking 5 disperses (remains cloudy) 6 floculates (clear at surface) water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick Chris Senserrick		8	absent
10 mins of vigorous shaking 5 disperses (remains cloudy) 6 floculates (clear at surface) water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick Chris Senserrick			
10 mins of vigorous shaking 5 disperses (remains cloudy) 6 floculates (clear at surface) water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick Chris Senserrick			
water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown Image: the second se		5 :1 water: soil mix	
water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown Image: Clay in the second s		10 mins of vigorous shaking 5 c	disperses (remains cloudy)
water type: distilled water temp : 20.0" description : CLAY, high plasticity, brown Image: Clay in the second s			
water temp: 20.0" description: CLAY, high plasticity, brown Image: Clay in the second		6 f	loculates (clear at surface)
description : CLAY, high plasticity, brown Image: Clay in the plasticity is classed in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards.	water type:		
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards.			EMERSON CLASS NUMBER
This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Chris Senserrick	description :	CLAY, high plasticity, brown	
Accredited for compliance with ISO/IEC 17025 - Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian / national standards. Approved signature Chris Senserrick			
TECHNICAL	A	This document is issued in accordance with NATA's accreditation requirement	
TECHNICAL	NATA		1 /
TECHNICAL	$\mathbf{\nabla}$		Approved signature

Appendix 4 Terms and Conditions

Scope of Work

These Terms and Conditions apply to any services provided to you ("the Client") by Strata Geoscience and Environmental Pty Ltd ("Strata"). By continuing to instruct Strata to act after receiving the Terms and Conditions or by using this report and its findings for design and/or permit application processes and not objecting to any of the Terms and Conditions the Client agrees to be bound by these Terms and Conditions, and any other terms and conditions supplied by Strata from time to time at Strata's sole and absolute discretion. The scope of the services provided to the Client by Strata is limited to the services and specified purpose agreed between Strata and the Client and set out in the correspondence to which this document is enclosed or annexed ("the Services"). Strata does not purport to advise beyond the Services.

Third Parties

The Services are supplied to the Client for the sole benefit of the Client and must not be relied upon by any person or entity other than the Client. Strata is not responsible or liable to any third party. All parties other than the Client are advised to seek their own advice before proceeding with any course of action.

Provision of Information

The Client is responsible for the provision of all legal, survey and other particulars concerning the site on which Strata is providing the Services, including particulars of existing structures and services and features for the site and for adjoining sites and structures. The Client is also responsible for the provision of specialised services not provided by Strata. If Strata obtains these particulars or specialised services on the instruction of the Client, Strata does so as agent of the Client and at the Client's expense. Strata is not obliged to confirm the accuracy and completeness of information supplied by the Client or any third party service provider. The Client is responsible for the accuracy and completeness of all particulars or services provided by the Client or obtained on the Client's behalf. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person or entity resulting from the failure of the Client must inform Strata in writing of that information. In the event additional information becomes available to the Client's cost. Any report is prepared on the assumption that the instructions and information supplied to Strata has been provided in good faith and is all of the information relevant to the provision of the Services by Strata. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if Strata has been supplied with insufficient, incorrect, incomplete, false or misleading information.

Integrity

Any report provided by Strata presents the findings of the site assessment. While all reasonable care is taken when conducting site investigations and reporting to the Client, Strata does not warrant that the information contained in any report is free from errors or omissions. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from errors in a report. Any report should be read in its entirety, inclusive of any summary and annexures. Strata does not accept any responsibility where part of any report is relied upon without reference to the full report.

Project Specific Criteria

Any report provided by Strata will be prepared on the basis of unique project development plans which apply only to the site that is being investigated. Reports provided by Strata do not apply to any project other than that originally specified by the Client to Strata. The Report must not be used or relied upon if any changes to the project are made. The Client should engage Strata to further advise on the effect of any change to the project. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever where any change to the project is made without obtaining a further written report from Strata. Changes to the project may include, but are not limited to, changes to the investigated site or neighbouring sites, for instance, variation of the location of proposed building envelopes/footprints, changes to building design which may impact upon building settlement or slope stability, or changes to earthworks, including removal (site cutting) or deposition of sediments or rock from the site.

Classification to AS2870-2011

It must be emphasised that the site classification to AS2870-2011 and recommendations referred to in this report are based solely on the observed soil profile at the time of the investigation for this report and account has been taken of Clause 2.1.1 of AS2870 - 2011. Other abnormal moisture conditions as defined in AS2870 – 2011 Clause 1.3.3 (a) (b) (c) and (d) may need to be considered in the design of the structure. Without designing for the possibility of all abnormal moisture conditions as defined in Clause 1.3.3, distresses will occur and may result in non "acceptable probabilities of serviceability and safety of the building during its design life", as defined in AS2870 - 2011. Clause 1.3.1. Furthermore the classification is preliminary in nature and needs verification at the founding surface inspection phase . The classification may be changed at this time based upon the nature of the founding surface over the entire footprint of the project area. Any costs associated with a change in the site classification are to be incurred by the client. Furthermore any costs associated with delayed works associated with a founding surface inspection or a change in classification are to be borne by the client. Where founding surface inspections are not commissioned the classifications contained within this report are void. Classification is based upon a range of expected ground surface movement as indicated in AS2870-2011. Where the range of movement exceeds the stipulations for the nominated classification Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever suffered by the Client or any other person.

Slope Instability Risks

Where comment, modelling or treatment options are suggested to limit the risk of slope instability Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from actual slope instability or mass movement over the site at any point over the design life of any structures or neighbouring structures.

Subsurface Variations with Time

Any report provided by Strata is based upon subsurface conditions encountered at the time of the investigation. Conditions can and do change significantly and unexpectedly over a short period of time. For example groundwater levels may fluctuate over time, affecting latent soil bearing capacity and ex-situ/insitu fill sediments may be placed/removed from the site. Changes to the subsurface conditions that were encountered at the time of the investigation void all recommendations made by Strata in any report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any change to the subsurface conditions that were encountered at the time of the investigation. In the event of a delay in the commencement of a project or if additional information becomes available to the Client about a change in conditions becomes available to the Client, the Client should engage Strata to make a further investigation to ensure that the conditions initially encountered still exist. Further advice will be provided at the Client's cost. Without limiting the generality of the above statement, Strata does not accept liability the Australian Standard which the report or purports to comply with), or the date when the Client becomes aware of any change in condition. Any report should be reviewed regularly to ensure that it continues to be accurate and further advice requested from Strata where applicable.

Interpretation

Site investigation identifies subsurface conditions only at the discrete points of geotechnical drilling, and at the time of drilling. All data received from the geotechnical drilling is interpreted to report to the Client about overall site conditions as well as their anticipated impact upon the specific project. Actual site conditions may vary from those inferred to exist as it is virtually impossible to provide a definitive subsurface profile which accounts for all the possible variability inherent in earth materials. This is particularly pertinent to some weathered sedimentary geologies or colluvial/alluvial clast deposits which may show significant variability in depth to refusal over a development area. Rock incongruities such as joints, dips or faults may also result in subsurface variability. Soil depths and composition can vary due to natural and anthopogenic processes. Variability may lead to differences between the design depth of bored/driven piers compared with the actual depth of individual piers constructed onsite. It may also affect the founding depth of conventional strip, pier and beam or slab footings, which may result in increased costs associated with excavation (particularly of rock) or materials costs of foundations. Founding surface inspections should be commissioned by the Client prior to foundation construction to verify the results of initial site characterisation and failure to insure this will void the classifications and recommendations contained within this report. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from any variation from the site conditions inferred to exist.

Strata is not responsible for the interpretation of site data or report findings by other parties, including parties involved in the design and construction process. The Client must seek advice from Strata about the interpretation of the site data or report.

Report Recommendations

Any report recommendations provided by Strata are only preliminary. A report is based upon the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until earthworks and/or foundation construction is almost complete. Where variations in conditions are encountered, Strata should be engaged to provide further advice. Further advice will be provided at the Client's cost. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever if the results of selective point sampling are not indicative of actual conditions throughout an area or if the Client becomes aware of variations in conditions and does not engage Strata for further advice.

Geo-environmental Considerations

Where onsite wastewater site investigation and land application system designs are provided by Strata, reasonable effort will be made to minimise environmental and public health risks associated with the disposal of effluent within site boundaries with respect to relevant Australian guidelines and industry best practise at the time of investigation. Strata is not liable, and accepts no responsibility, for any claim, demand, charge, loss, damage, injury or expense whatsoever resulting from:

- changes to either the project or site conditions that affect the onsite wastewater land application system's ability to safely dispose of modelled wastewater flows; or
- seepage, pollution or contamination or the cost of removing, nullifying or clearing up seepage, polluting or contaminating substances; or
- (iii) poor system performance where septic tanks have not been de-sludged at maximum intervals of 3 years or AWTS systems have not been serviced in compliance with the manufacturers recommendations; or
- (iv) failure of the client to commission both interim and final inspections by the designer throughout the system construction; or
- (v) the selection of inappropriate plants for irrigation areas; or
- (vi) damage to any infrastructure including but not limited to foundations, walls, driveways and pavements; or
- (vii) land instability, soil erosion or dispersion; or
- (viii) design changes requested by the Permit Authority.

Furthermore Strata does not guarantee septic trench and bed design life beyond 5 years from installation, given the influence various household chemicals have on soil structural decline and premature trench failure in some soil types

Strata does not consider site contamination, unless the Client specifically instructs Strata to consider the site contamination in writing. If a request is made by the Client to consider site contamination, Strata will provide additional terms and conditions that will apply to the engagement.

Copyright and Use of Documents

Copyright in all drawings, reports, specifications, calculations and other documents provided by Strata or its employees in connection with the Services remain vested in Strata. The Client has a licence to use the documents for the purpose of completing the project. However, the Client must not otherwise use the documents, make copies of the documents or amend the documents unless express approval in writing is given in advance by Strata. The Client must not publish or allow to be published, in whole or in part, any document provided by Strata or the name or professional affiliations of Strata, without first obtaining the written consent of Strata as to the form and context in which it is to appear.

If, during the course of providing the Services, Strata develops, discovers or first reduces to practice a concept, product or process which is capable of being patented then such concept, product or process is and remains the property of Strata and:

- the Client must not use, infringe or otherwise appropriate the same other than for the purpose of the project without first obtaining the written consent of Strata; and
- the Client is entitled to a royalty free licence to use the same during the life of the works comprising the project.

Digital Copies of Report

If any report is provided to the Client in an electronic copy except directly from Strata, the Client should verify the report contents with Strata to ensure they have not been altered or varied from the report provided by Strata.

APPENDIX F LABORATORY CERTIFICATES OF ANALYSIS

BU Beveridge Williams _

Chain of Custody Form

-H		venug	\subset VVIII	IIQII		ملقعيمين والم	· · · · · · · · · · · · · · · · · · ·							
	100 (100 g ¹⁰⁴	ooment & envi				ان	ob numl	ber	1	801684	Page	e 1	of	nd.
	n and an	Contraint Child Park				 	Laboratory ALS Water Resou					urces Gi	roup	
Client	Depart	ment of Education	and Early Ch	ildhood		Quote number				2013-146A LTP				
Project		Site Suitability A	ssessment			Pro	ject Mar	nager	A,Hayes					
Location		155-175 Batten Road, Connewarre						Sampled by			A.Hay	es	1844 da 4 a 4 annaichea	
				1		J			Testing	require	1	********	~~!!?!	
S	ample ID	Date sampl	eq Matrix	No. of containers	Heavy Metals (24)	OCP & OPP	Nitrate	ph(f) and pH(ox)	sulphäte					
BHO	100-0-1	12/12/18	3 3	1	10	Š	5		N N				~~~~	
BHOL	and the second s	112/10		(:		\sim		12	K					ļ
								\sim	X					:
BHOL	10.0-0-1	2.*			$ \times$	X	\times	$ $ \times	$1\times$					1
SHO2	11.9-2.0	2¥						\geq	X					
BHOZ	10001				\times		×	1>	X					
BHOS	1 19-2.0				-			2	X	÷••••				-
BHOR					~	~	1		$\langle \rangle$	•••••				:
8 Marto	/ 1.9-2.0					1		K	$ \rangle$		·			
DRU9	4					1	~~~	\mathbb{R}						
Bitos	1 010-0.1				X	$\mid \times \mid$	\geq	\geq	$ \times $					
BHOG	10.0-0.1				$ $ \times	\geq	\geq	X	$ \times $					
Bło7					\times	X	\geq	X						
BHO7	1 1.7-1.6						- <u></u>	1	$ \bigtriangledown $					÷
BHOG		3		<u>├</u> 		>	~							
10.		1		+			\geq		$ \leq $					
840	2	V.		·		\approx	\leq	\searrow	$ \times $					
BHIO	10.0-01	13.12.18			\geq	\times	\times	X	$ \times $					
SHIO	1/ 0.7-0.8	13.12.1	8 1					1	$ \times $					
BHI	10.0-0-1	12.12.1	é I		\times	\geq	>	Z	X					
3-11/11	12.50-515	5 1						1	$ \bigtriangledown $		·			
BHI	7 / 0.0-3-1					\sim	~ >	-S				<u></u>		
She was	Sacar	1 17-				<u>_X</u>		\sim	\sim					
Notes	79982452	<u>1 V</u>		LY_	L									
Matrix: S = 5o ioil: A-S-BEV Water: /	J-W1 (HM/OCP) A-W-BEV-W1 (EPA Ta All groundwater heav	r W = Water R = Rins A-S-BEV-W2 (HM/P/ ble 2, TDS, pH, anions/ y metals testing must I	H) A-S-BEV- cations, low leve	W3 (HM/P II: PAH, OC atals unles	ah/ocp) .P, TPH)	A-S-E ABI	EV-W4 (H NANZLL (A	M/TPH/P	AH)	A-S-BEV-V	, Sb, Se, Sn, V /S (EPA 621) Is & organics	√ extra n	netals)	
Turnaroun Chain of Cu		48hr 🔲	72hr	X	Standar		Comme	nts:						
	om	Company	Date		Receiv	ied by		Com			D-+	·····		
		Beveridge Williams	13. 12.11	a:	Sw			interior de la companya de		· • · · · · · · · · · · · · · · · · · ·	Date		Tim	
			34 16 411	a	6» (V	1		17	LP		12/12		12 -2	1
			· · · · · · · · · · · · · · · · · · ·			·					· · ·			
uality cont	tral													
		- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14			****	******	••••••						Initia	al
⇒ampie pi	eservation App	propriate sample c	ontainers use	d, refrige	erated or	chilled.	samples	supplie	d to labe	ratory			A.H	ł

* Samples Not Rectard.

Chain of Custody Form

BI	Be	verio	'dge	Willi	am	IS	,
	, olevelo	pmento	environ 2	ment co	nsultar	nts	

		enuge smenskenvi				k	ob numb	er	18	01684	Page	2	_ of 2_
						L	aborato	ry		ALS V	Vater Reso	urces Gi	oup
Client	Departm	ent of Education	and Early Chil	dhood		Qu	ote num	iber			2013-146	A LTP	
Project	······································	Site Suitability A	ssessment	*****	****	Proj	ect Man	ager			А.Нау	ë5	
Location]	LSS-175 Batten Road	, Connewarre			5	ampled	Ьγ	A.Hayes				
				1		·····	T	r	Testing	require	d	;	
	ample ID	Date sample	ž.	No. of containers	Heavy Metals (24)	0CP & 0PP	Nitrate	ph(f) and pH(ox)	sulphate				
BH13	0.0-0.1	12.12.16	3 5		\geq	\geq	X	1	\times				
BHI	3/ 1.9-2.0			<u> </u>		j		\square	X				
BHIL	t/ 0,00				$ \times $		\geq	$ \lambda\rangle$	X				
IS H/	+/ \$ \$\$					~	款		Σ				
Istil	1 8.3 0.4	5K. 1/2				$>$	×.	$\left \right\rangle$	$ \times $				
BHIS	1 62-1.4				1				X				
BHI6	/ 0.0-0-1					\sim			X				
- 1Hd	t/ 0.0-0.1	-				\geq	×.	X	X				
BH 11	1-9-2.0	12 12 1	<u></u>		K	1 de		$\langle \langle \rangle$					
OH II	3/00-0-1	13.12.11	8		$ \land$	\sim		1	X				
adva	× 4 4-2.0												
2 and	JAMAR SI							~					
6110	10,44.0					~		A	$\left \begin{array}{c} \\ \end{array} \right $		<u> </u>		
<u>1640</u>	10.0-0.1	¥.	····		$\downarrow \land$	$ \land $			X				
1212	1 1 5	1.9.17 (-1		\sim		5.0				
1014	2-5-DO)	12.12.1	Q V		6		\mapsto	-~	\mathbf{Z}				
1010	12-5-002	12-12-11	<u>s v</u>	¥.		\wedge		\sim					
	ж.е. У.е.	. volster			-			· · · · ·					
				: 		alalahin atau atau kata					· · · · · · · · · · · · · · · · · · ·		
Notes		L	J	L		L	l,		[I		
Soil: A-S-BE Water:	oll GW = Groundwater V-W1 (HM/OCP) A-W-BEV-W1 (EPA Tab All groundwater heavy	A-S-BEV-W2 (HM/P le 2, TDS, pH, anions, metals testing must	AH) A-S-BEV- /cations, low leve be for soluble in	W3 (HM) el: PAH, C etals unle	(PAH/OCP) OCP; TPH) ess' otherw	A-S- AE Ise indical	8EV-W4 (I WANZLL (ied.	IM/TPH/I ANZECC s	PAH)	A-S-BEV-	b, Sb, Se, Sn, WS (EPA 621 als & organic	w/ extra	metals)
Turnerou Chain of C	nd time 24hr	48hr 🔲	72hr	X	Standa	rd 🔲	Comme	nts:		******	••••••••••••••••••••••••••••••••••••••		
finnennesseuri	rom	Company	Date		Recei	ved by		Con	pany		Date		Time
A	Hayes B	everidge Williams	13.12.11	Q		M		AL	(13/12	_	13-11
1-111-1			a get trans	<u></u>							-2/10		
			· · · · · · · · · · · · · · · · · · ·		i								*****
Quality co	ntrol		J	L		*****				<u> </u>		·····	Initial
		ropriate sample (containers use	d, refri	gerated (or chilled	l sample	s suppli	ed to lah	oratory		********	A:H
Sample f		s conducted with								,,,,,,,,,,,		all daggerer and	

			C	ERTIFICATE OF AN	ALYSIS						
Batch No:	18-55136			Page		Page 1 of 26					
Replacement Report	729987			Laborato	ry	Scoresby Laboratory					
This report replaces Rep	port Number: 7296	79		Address		Caribbean Business Pa	rk, 22 Dalmore Drive, Scor	esby, VIC 3179			
Client:	Beveridge Williams	& Co Pty Ltd		Phone		03 8756 8000					
Contact:	Andrew Mellett			<i>Fax</i> Contact:		03 9763 1862 Trang Phan					
Address:	PO Box 61 MALVERN VIC 31	144		Contact.		Client Manager Le-Trang.Phan@alsglot	pal.com				
Client Program Ref:	1801684			Date Sar	npled:	12-Dec-2018 - 13-Dec-2	2018				
ALS Program Ref:	BEVWILL			Date Sar	nples Received:	13-Dec-2018					
PO No:	Not Available			Date Iss	ued:	20-Dec-2018					
The hash (#)	below indicates methods no	ot covered by NATA acc	creditation in the performance	ce of this service .							
Analysis	Method	Laboratory	Analysis	Method	Laboratory	Analysis	Method	Laboratory			
MS Total Metals OP	WG020B WP130	Scoresby Scoresby	NO3 as N SO4	EG058GV WD041G	Scoresby Scoresby	OCP SPOCAS Field Tests	WP068A # QASSIT-ASS H.1.2-3	Scoresby Scoresby			

Please note that this is an amended report replacing the one originally sent on 18/12/2018. The amendment involves re-testing and reporting Sulphate by a an alternate technique which is NON-NATA. The amendments were made by Le-Trang Phan on 20/12/2018.

Signatories

Legionella species refers to Legionella species other than Legionella pneumophila Measurement Uncertainties values for your compliance results are available at this link

Name	Title	Name	Title
Chatura Perera	Team Leader Nutrients	Hao Zhang	Team Leader Organics
John Earl	Team Leader Metals	Kosta Christopoulos	Deputy Team Leader Organics
Melani Wijayasiri	Analyst		

RIGHT SOLUTIONS | RIGHT PARTNER

Page: Page 2 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference.

CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

				Sample No.	5922923	5922924	5922925	5922926	5922929	5922930
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/1.2-1.3	BH02/0.0-0.1	BH02/1.9-2.0	BH04/0.0-0.1	BH04/1.9-2.0
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS #	LOR							
OCP	BHC (alpha isomer)	319-84-6	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	a-Endosulphan	959-98-8	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Aldrin	309-00-2	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	BHC (beta isomer)	319-85-7	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	b-Endosulphan	33213-65-9	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Chlordane	57-74-9	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	cis-Chlordane	5103-71-9	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	trans-Chlordane	5103-74-2	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	BHC (delta isomer)	319-86-8	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	DDD	72-54-8	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	DDE	72-55-9	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	DDT	50-29-3	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Dieldrin	60-57-1	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Sum of alpha-, beta- and Endosulphan	115-29-7	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Endosulfan Sulfate	1031-07-8	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Endrin	72-20-8	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Endrin Aldehyde	7421-93-4	<0.05	mg/kg	<0.05		< 0.05		<0.05	
OCP	Endrin Ketone	53494-70-5	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Hexachlorobenzene	118-74-1	< 0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Heptachlor Epoxide	1024-57-3	<0.05	mg/kg	<0.05		< 0.05		<0.05	
OCP	Heptachlor	76-44-8	<0.05	mg/kg	<0.05		< 0.05		<0.05	
OCP	BHC (gamma isomer) [Lindane]	58-89-9	<0.05	mg/kg	<0.05		< 0.05		<0.05	
OCP	Methoxychlor	72-43-5	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Oxychlordane	27304-13-8	<0.05	mg/kg	<0.05		< 0.05		<0.05	
OCP	Sum of DDD, DDE and DDT	DDT+DDE+DD	<0.05	mg/kg	<0.05		<0.05		<0.05	
OCP	Sum of Aldrin and Dieldrin	309-00-2 +	<0.05	mg/kg	<0.05		< 0.05		<0.05	
Analysis	Analyte	CAS #	LOR							

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 3 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922923	5922924	5922925	5922926	5922929	5922930
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/1.2-1.3	BH02/0.0-0.1	BH02/1.9-2.0	BH04/0.0-0.1	BH04/1.9-2.0
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
OP	Chlorpyrifos	2921-88-2	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Diazinon	333-41-5	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Dichlorvos	62-73-7	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Ethion	563-12-2	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Fenthion	55-38-9	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Malathion	121-75-5	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Mevinphos	7786-34-7	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Parathion	56-38-2	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Ronnel (Fenchlorfos)	299-84-3	<0.5	mg/kg	<0.5		<0.5		<0.5	
OP	Stirofos	961-11-5	<0.5	mg/kg	<0.5		<0.5		<0.5	
Analysis	Analyte	CAS #	LOR							
SO4	Sulfate	14808-79-8	<10	mg/kg	1600 A	1400 A	850 A	560 A	1300 A	1400 A
NO3 as N	Nitrate, as N	14797-55-8(as	<0.2	mg/kg	<2.5 LINT		<5 LINT		<5 LINT	
Analysis	Analyte	CAS #	LOR							
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg	15000		15000		13000	
MS Total Metals	Antimony	7440-36-0	<5	mg/kg	<5		<5		<5	
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg	<5		9		<5	
MS Total Metals	Barium	7440-39-3	<5	mg/kg	32		30		16	
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg	<5		<5		<5	
MS Total Metals	Boron	7440-42-8	<10	mg/kg	<10		<10		<10	
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg	<0.2		<0.2		<0.2	
MS Total Metals	Chromium	7440-47-3	<5	mg/kg	31		70		25	
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg	7		11		<5	
MS Total Metals	Copper	7440-50-8	<5	mg/kg	<5		5		<5	
MS Total Metals	Iron	7439-89-6	<10	mg/kg	17000		60000		17000	
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg	24		22		18	
MS Total Metals	Lead	7439-92-1	<5	mg/kg	8		17		9	
MS Total Metals	Manganese	7439-96-5	<5	mg/kg	28		62		16	
MS Total Metals	Mercury	7439-97-6	<0.05	mg/kg	<0.05		<0.05		<0.05	
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg	<5		<5		<5	
MS Total Metals	Nickel	7440-02-0	<5	mg/kg	12		19		6	

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 4 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922923	5922924	5922925	5922926	5922929	5922930
			Cli	ent Sample ID	BH01/0.0-0.1	BH01/1.2-1.3	BH02/0.0-0.1	BH02/1.9-2.0	BH04/0.0-0.1	BH04/1.9-2.0
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
MS Total Metals	Selenium	7782-49-2	<3	mg/kg	<3		<3		<3	
MS Total Metals	Silver	7440-22-4	<5	mg/kg	<5		<5		<5	
MS Total Metals	Strontium	7440-24-6	<5	mg/kg	18		13		10	
MS Total Metals	Thallium	7440-28-0	<5	mg/kg	<5		<5		<5	
MS Total Metals	Thorium	7440-29-1	<5	mg/kg	5		6		7	
MS Total Metals	Tin	7440-31-5	<5	mg/kg	<5		<5		<5	
MS Total Metals	Titanium	7440-32-6	<5	mg/kg	33		96		42	
MS Total Metals	Uranium	7440-61-1	<5	mg/kg	<5		<5		<5	
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg	31		210		35	
MS Total Metals	Zinc	7440-66-6	<5	mg/kg	9		10		6	
Analysis	Analyte	CAS #	LOR							
SPOCAS Field	Field pH	pH_FIELD	<0.1	Units	7.2	7.4	5.6	7.3	5.2	7.3
SPOCAS Field	Field pH of Peroxide extract	pHfox	<0.1	Units	5.9	6.1	4.1	6.4	3.7	6.7
SPOCAS Field	Reaction Rate	REACTION_RA			Slight	Slight	Slight	Slight	Slight	Slight

Analysed by an alternate technique А

LINT Level of Reporting raised due to interferences in the sample matrix

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 5 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference.

CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

			Sample No.	5922931	5922932	5922933	5922934	5922935	5922936
			Client Sample ID	BH05/0.0-0.1	BH06/0.0-0.1	BH07/0.0-0.1	BH07/1.7-1.8	BH08/0.0-0.1	BH09/0.0-0.1
			Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18	13/12/18
			Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS #	LOR						
OCP	BHC (alpha isomer)	319-84-6	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	a-Endosulphan	959-98-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Aldrin	309-00-2	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	BHC (beta isomer)	319-85-7	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	b-Endosulphan	33213-65-9	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Chlordane	57-74-9	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	cis-Chlordane	5103-71-9	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	trans-Chlordane	5103-74-2	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	BHC (delta isomer)	319-86-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	DDD	72-54-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	DDE	72-55-9	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	DDT	50-29-3	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Dieldrin	60-57-1	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Sum of alpha-, beta- and Endosulphan	115-29-7	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Endosulfan Sulfate	1031-07-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Endrin	72-20-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Endrin Aldehyde	7421-93-4	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Endrin Ketone	53494-70-5	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Hexachlorobenzene	118-74-1	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Heptachlor Epoxide	1024-57-3	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Heptachlor	76-44-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	BHC (gamma isomer) [Lindane]	58-89-9	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Methoxychlor	72-43-5	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Oxychlordane	27304-13-8	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Sum of DDD, DDE and DDT	DDT+DDE+DD	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
OCP	Sum of Aldrin and Dieldrin	309-00-2 +	<0.05 mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
Analysis	Analyte	CAS #	LOR						

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 6 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922931	5922932	5922933	5922934	5922935	5922936
			Clie	ent Sample ID	BH05/0.0-0.1	BH06/0.0-0.1	BH07/0.0-0.1	BH07/1.7-1.8	BH08/0.0-0.1	BH09/0.0-0.1
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18	13/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
OP	Chlorpyrifos	2921-88-2	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Diazinon	333-41-5	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Dichlorvos	62-73-7	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Ethion	563-12-2	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Fenthion	55-38-9	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Malathion	121-75-5	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Mevinphos	7786-34-7	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Parathion	56-38-2	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Ronnel (Fenchlorfos)	299-84-3	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
OP	Stirofos	961-11-5	<0.5	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5
Analysis	Analyte	CAS #	LOR							
SO4	Sulfate	14808-79-8	<10	mg/kg	400 A	330 A	3100 A	1400 A	1200 A	1600 A
NO3 as N	Nitrate, as N	14797-55-8(as	<0.2	mg/kg	0.9	<1 LINT	93		18	<25 LINT
Analysis	Analyte	CAS #	LOR							
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg	8300	13000	18000		12000	9200
MS Total Metals	Antimony	7440-36-0	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Barium	7440-39-3	<5	mg/kg	36	66	260		93	47
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Boron	7440-42-8	<10	mg/kg	<10	<10	<10		<10	<10
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg	<0.2	<0.2	<0.2		<0.2	<0.2
MS Total Metals	Chromium	7440-47-3	<5	mg/kg	24	49	37		40	31
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg	<5	9	11		9	12
MS Total Metals	Copper	7440-50-8	<5	mg/kg	5	8	7		9	5
MS Total Metals	Iron	7439-89-6	<10	mg/kg	16000	27000	20000		30000	21000
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg	16	23	28		19	23
MS Total Metals	Lead	7439-92-1	<5	mg/kg	12	13	8		16	11
MS Total Metals	Manganese	7439-96-5	<5	mg/kg	68	300	34		55	92
MS Total Metals	Mercury	7439-97-6	< 0.05	mg/kg	<0.05	<0.05	<0.05		<0.05	<0.05
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Nickel	7440-02-0	<5	mg/kg	10	16	24		19	15

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page:Page 7 of 26Batch No:18-55136Report Number:729987Client:Beveridge Williams & Co Pty LtdClient Program Ref:1801684

				Sample No.	5922931	5922932	5922933	5922934	5922935	5922936
			Cli	ent Sample ID	BH05/0.0-0.1	BH06/0.0-0.1	BH07/0.0-0.1	BH07/1.7-1.8	BH08/0.0-0.1	BH09/0.0-0.1
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18	13/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
MS Total Metals	Selenium	7782-49-2	<3	mg/kg	<3	<3	<3		<3	<3
MS Total Metals	Silver	7440-22-4	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Strontium	7440-24-6	<5	mg/kg	13	15	18		17	14
MS Total Metals	Thallium	7440-28-0	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Thorium	7440-29-1	<5	mg/kg	<5	<5	6		<5	<5
MS Total Metals	Tin	7440-31-5	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Titanium	7440-32-6	<5	mg/kg	65	54	32		76	140
MS Total Metals	Uranium	7440-61-1	<5	mg/kg	<5	<5	<5		<5	<5
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg	53	84	32		120	80
MS Total Metals	Zinc	7440-66-6	<5	mg/kg	16	16	10		18	9
Analysis	Analyte	CAS #	LOR							
SPOCAS Field	Field pH	pH_FIELD	<0.1	Units	5.8	5.9	7.1	7.9	7.3	6.8
SPOCAS Field	Field pH of Peroxide extract	pHfox	<0.1	Units	3.0	3.4	5.1	7.1	3.7	5.2
SPOCAS Field	Reaction Rate	REACTION_RA			Moderate	Slight	Slight	Slight	Slight	Slight

A Analysed by an alternate technique

LINT Level of Reporting raised due to interferences in the sample matrix

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 8 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference.

CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

				Sample No.	5922937	5922939	5922940	5922941	5922942	5922943
			Clie	ent Sample ID	BH10/0.0-0.1	BH11/0.0-0.1	BH11/1.9-2.0	BH12/0.0-0.1	BH13/1.9-2.0	BH14/0.0-0.1
				Sample Date	13/12/18	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS #	LOR							
OCP	BHC (alpha isomer)	319-84-6	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	a-Endosulphan	959-98-8	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Aldrin	309-00-2	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	BHC (beta isomer)	319-85-7	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	b-Endosulphan	33213-65-9	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Chlordane	57-74-9	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	cis-Chlordane	5103-71-9	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	trans-Chlordane	5103-74-2	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	BHC (delta isomer)	319-86-8	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	DDD	72-54-8	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	DDE	72-55-9	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	DDT	50-29-3	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Dieldrin	60-57-1	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Sum of alpha-, beta- and Endosulphan	115-29-7	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Endosulfan Sulfate	1031-07-8	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Endrin	72-20-8	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Endrin Aldehyde	7421-93-4	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Endrin Ketone	53494-70-5	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Hexachlorobenzene	118-74-1	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Heptachlor Epoxide	1024-57-3	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Heptachlor	76-44-8	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	BHC (gamma isomer) [Lindane]	58-89-9	< 0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Methoxychlor	72-43-5	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Oxychlordane	27304-13-8	< 0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Sum of DDD, DDE and DDT	DDT+DDE+DD	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
OCP	Sum of Aldrin and Dieldrin	309-00-2 +	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
Analysis	Analyte	CAS #	LOR							

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 9 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922937	5922939	5922940	5922941	5922942	5922943
			Clie	ent Sample ID	BH10/0.0-0.1	BH11/0.0-0.1	BH11/1.9-2.0	BH12/0.0-0.1	BH13/1.9-2.0	BH14/0.0-0.1
				Sample Date	13/12/18	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
OP	Chlorpyrifos	2921-88-2	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Diazinon	333-41-5	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Dichlorvos	62-73-7	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Ethion	563-12-2	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Fenthion	55-38-9	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Malathion	121-75-5	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Mevinphos	7786-34-7	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Parathion	56-38-2	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Ronnel (Fenchlorfos)	299-84-3	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
OP	Stirofos	961-11-5	<0.5	mg/kg	<0.5	<0.5		<0.5		<0.5
Analysis	Analyte	CAS #	LOR							
SO4	Sulfate	14808-79-8	<10	mg/kg	1100 A	1100 A	1600 A	2800 A	1600 A	2800 A
NO3 as N	Nitrate, as N	14797-55-8(as	<0.2	mg/kg	<50 LINT	<2.5 LINT		<5 LINT		21
Analysis	Analyte	CAS #	LOR							
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg	9100	11000		18000		25000
MS Total Metals	Antimony	7440-36-0	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg	<5	<5		7		18
MS Total Metals	Barium	7440-39-3	<5	mg/kg	22	58		360		950
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Boron	7440-42-8	<10	mg/kg	<10	<10		<10		<10
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg	<0.2	<0.2		<0.2		<0.2
MS Total Metals	Chromium	7440-47-3	<5	mg/kg	25	38		56		68
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg	11	5		11		7
MS Total Metals	Copper	7440-50-8	<5	mg/kg	<5	8		6		8
MS Total Metals	Iron	7439-89-6	<10	mg/kg	12000	29000		43000		37000
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg	25	20		24		52
MS Total Metals	Lead	7439-92-1	<5	mg/kg	9	15		13		17
MS Total Metals	Manganese	7439-96-5	<5	mg/kg	29	79		29		38
MS Total Metals	Mercury	7439-97-6	<0.05	mg/kg	<0.05	<0.05		<0.05		<0.05
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Nickel	7440-02-0	<5	mg/kg	11	10		27		13

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 10 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922937	5922939	5922940	5922941	5922942	5922943
	Client Sample ID					BH11/0.0-0.1	BH11/1.9-2.0	BH12/0.0-0.1	BH13/1.9-2.0	BH14/0.0-0.1
		Sample Date	13/12/18	12/12/18	12/12/18	12/12/18	12/12/18	12/12/18		
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
MS Total Metals	Selenium	7782-49-2	<3	mg/kg	<3	<3		<3		<3
MS Total Metals	Silver	7440-22-4	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Strontium	7440-24-6	<5	mg/kg	5	12		25		17
MS Total Metals	Thallium	7440-28-0	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Thorium	7440-29-1	<5	mg/kg	6	6		7		12
MS Total Metals	Tin	7440-31-5	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Titanium	7440-32-6	<5	mg/kg	260	67		60		22
MS Total Metals	Uranium	7440-61-1	<5	mg/kg	<5	<5		<5		<5
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg	32	110		140		92
MS Total Metals	Zinc	7440-66-6	<5	mg/kg	6	15		10		15
Analysis	Analyte	CAS #	LOR							
SPOCAS Field	Field pH	pH_FIELD	<0.1	Units	7.0	6.0	8.3	6.4	6.6	7.0
SPOCAS Field	Field pH of Peroxide extract	pHfox	<0.1	Units	4.5	3.8	7.1	4.6	5.0	5.6
SPOCAS Field	Reaction Rate	REACTION_RA			Slight	Slight	Slight	Slight	Slight	Slight

A Analysed by an alternate technique

LINT Level of Reporting raised due to interferences in the sample matrix

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 11 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference.

CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

			Sample N	5922945	5922946	5922947	5922948	5922950	5922951
			Client Sample I	D BH15/0.3-0.4	BH15/1.3-1.4	BH16/0.0-0.1	BH17/0.0-0.1	BH18/0.0-0.1	BH18/1.9-2.0
			Sample Dat	e 12/12/18	12/12/18	12/12/18	12/12/18	13/12/18	13/12/18
			Sample Typ	e SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS #	LOR						
OCP	BHC (alpha isomer)	319-84-6	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	a-Endosulphan	959-98-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Aldrin	309-00-2	<0.05 mg/kg	< 0.05		<0.05	<0.05	<0.05	
OCP	BHC (beta isomer)	319-85-7	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	b-Endosulphan	33213-65-9	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Chlordane	57-74-9	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	cis-Chlordane	5103-71-9	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	trans-Chlordane	5103-74-2	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	BHC (delta isomer)	319-86-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	DDD	72-54-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	DDE	72-55-9	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	DDT	50-29-3	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Dieldrin	60-57-1	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Sum of alpha-, beta- and Endosulphan	115-29-7	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Endosulfan Sulfate	1031-07-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Endrin	72-20-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Endrin Aldehyde	7421-93-4	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Endrin Ketone	53494-70-5	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Hexachlorobenzene	118-74-1	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Heptachlor Epoxide	1024-57-3	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Heptachlor	76-44-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	BHC (gamma isomer) [Lindane]	58-89-9	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Methoxychlor	72-43-5	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Oxychlordane	27304-13-8	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Sum of DDD, DDE and DDT	DDT+DDE+DD	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
OCP	Sum of Aldrin and Dieldrin	309-00-2 +	<0.05 mg/kg	<0.05		<0.05	<0.05	<0.05	
Analysis	Analyte	CAS #	LOR						

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 12 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922945	5922946	5922947	5922948	5922950	5922951
			Clie	ent Sample ID	BH15/0.3-0.4	BH15/1.3-1.4	BH16/0.0-0.1	BH17/0.0-0.1	BH18/0.0-0.1	BH18/1.9-2.0
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	13/12/18	13/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
OP	Chlorpyrifos	2921-88-2	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Diazinon	333-41-5	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Dichlorvos	62-73-7	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Ethion	563-12-2	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Fenthion	55-38-9	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Malathion	121-75-5	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Mevinphos	7786-34-7	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Parathion	56-38-2	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Ronnel (Fenchlorfos)	299-84-3	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
OP	Stirofos	961-11-5	<0.5	mg/kg	<0.5		<0.5	<0.5	<0.5	
Analysis	Analyte	CAS #	LOR							
SO4	Sulfate	14808-79-8	<10	mg/kg	1100 A	2400 A	230 A	730 a	1800 A	1100 A
NO3 as N	Nitrate, as N	14797-55-8(as	<0.2	mg/kg	<25 LINT		<2.5 LINT	<0.25 LINT	<50 LINT	
Analysis	Analyte	CAS #	LOR							
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg	12000		20000	19000	20000	
MS Total Metals	Antimony	7440-36-0	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg	17		<5	<5	<5	
MS Total Metals	Barium	7440-39-3	<5	mg/kg	33		130	180	350	
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Boron	7440-42-8	<10	mg/kg	<10		<10	<10	<10	
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg	<0.2		<0.2	<0.2	<0.2	
MS Total Metals	Chromium	7440-47-3	<5	mg/kg	58		64	53	35	
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg	5		9	19	11	
MS Total Metals	Copper	7440-50-8	<5	mg/kg	<5		13	11	5	
MS Total Metals	Iron	7439-89-6	<10	mg/kg	52000		28000	32000	20000	
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg	14		34	38	27	
MS Total Metals	Lead	7439-92-1	<5	mg/kg	13		9	12	9	
MS Total Metals	Manganese	7439-96-5	<5	mg/kg	28		84	250	55	
MS Total Metals	Mercury	7439-97-6	<0.05	mg/kg	<0.05		<0.05	<0.05	<0.05	
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Nickel	7440-02-0	<5	mg/kg	11		29	31	18	

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 13 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922945	5922946	5922947	5922948	5922950	5922951
			Cli	ent Sample ID	BH15/0.3-0.4	BH15/1.3-1.4	BH16/0.0-0.1	BH17/0.0-0.1	BH18/0.0-0.1	BH18/1.9-2.0
				Sample Date	12/12/18	12/12/18	12/12/18	12/12/18	13/12/18	13/12/18
		Sample Type				SOIL	SOIL	SOIL	SOIL	SOIL
MS Total Metals	Selenium	7782-49-2	<3	mg/kg	<3		<3	<3	<3	
MS Total Metals	Silver	7440-22-4	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Strontium	7440-24-6	<5	mg/kg	8		39	32	21	
MS Total Metals	Thallium	7440-28-0	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Thorium	7440-29-1	<5	mg/kg	6		6	6	7	
MS Total Metals	Tin	7440-31-5	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Titanium	7440-32-6	<5	mg/kg	140		130	240	66	
MS Total Metals	Uranium	7440-61-1	<5	mg/kg	<5		<5	<5	<5	
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg	200		42	73	34	
MS Total Metals	Zinc	7440-66-6	<5	mg/kg	7		26	25	14	
Analysis	Analyte CAS # LOR									
SPOCAS Field	Field pH	pH_FIELD	<0.1	Units	5.5	6.9	6.0	6.3	7.2	7.4
SPOCAS Field	Field pH of Peroxide extract	pHfox	<0.1	Units	3.2	4.7	3.5	3.9	5.1	6.2
SPOCAS Field	Reaction Rate	REACTION_RA			Slight	Slight	Slight	Moderate	Slight	Slight

A Analysed by an alternate technique

LINT Level of Reporting raised due to interferences in the sample matrix

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 14 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

LOR = Limit of reporting. When a reported LOR is higher than the standard LOR, this may be due to high moisture content, insufficient sample or matrix interference.

CAS Number = Chemistry Abstract Services Number. The analytical procedures in this report (including in house methods) are developed from internationally recognised procedures such as those published by USEPA, APHA and NEPM.

				Sample No.	5922952	5922953	5922954	5922955	5923098
			Cli	ent Sample ID	BH16/0.9-1.0	BH19/0.0-0.1	181212-S-D01	181212-S-D02	BH13/0.0-0.1
				Sample Date	13/12/18	13/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL
Analysis	Analyte	CAS #	LOR						
OCP	BHC (alpha isomer)	319-84-6	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	a-Endosulphan	959-98-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Aldrin	309-00-2	<0.05	mg/kg		<0.05	< 0.05	<0.05	<0.05
OCP	BHC (beta isomer)	319-85-7	<0.05	mg/kg		<0.05	< 0.05	<0.05	<0.05
OCP	b-Endosulphan	33213-65-9	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Chlordane	57-74-9	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	cis-Chlordane	5103-71-9	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	trans-Chlordane	5103-74-2	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	BHC (delta isomer)	319-86-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	DDD	72-54-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	DDE	72-55-9	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	DDT	50-29-3	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Dieldrin	60-57-1	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Sum of alpha-, beta- and Endosulphan	115-29-7	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Endosulfan Sulfate	1031-07-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Endrin	72-20-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Endrin Aldehyde	7421-93-4	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Endrin Ketone	53494-70-5	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Hexachlorobenzene	118-74-1	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Heptachlor Epoxide	1024-57-3	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Heptachlor	76-44-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	BHC (gamma isomer) [Lindane]	58-89-9	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Methoxychlor	72-43-5	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Oxychlordane	27304-13-8	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Sum of DDD, DDE and DDT	DDT+DDE+DD	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
OCP	Sum of Aldrin and Dieldrin	309-00-2 +	<0.05	mg/kg		<0.05	< 0.05	<0.05	<0.05
Analysis	Analyte	CAS #	LOR						

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 15 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922952	5922953	5922954	5922955	5923098
			Cli	ent Sample ID	BH16/0.9-1.0	BH19/0.0-0.1	181212-S-D01	181212-S-D02	BH13/0.0-0.1
				Sample Date	13/12/18	13/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL
OP	Chlorpyrifos	2921-88-2	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Diazinon	333-41-5	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Dichlorvos	62-73-7	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Ethion	563-12-2	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Fenthion	55-38-9	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Malathion	121-75-5	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Mevinphos	7786-34-7	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Parathion	56-38-2	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Ronnel (Fenchlorfos)	299-84-3	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
OP	Stirofos	961-11-5	<0.5	mg/kg		<0.5	<0.5	<0.5	<0.5
Analysis	Analyte	CAS #	LOR						
SO4	Sulfate	14808-79-8	<10	mg/kg	2200 A	2300 A	770 A	2700 A	3700 A
NO3 as N	Nitrate, as N	14797-55-8(as	<0.2	mg/kg		<25 LINT	8.8	<25 LINT	<25 LINT
Analysis	Analyte	CAS #	LOR						
MS Total Metals	Aluminium	7429-90-5	<5	mg/kg		20000	15000	19000	21000
MS Total Metals	Antimony	7440-36-0	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Arsenic	7440-38-2	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Barium	7440-39-3	<5	mg/kg		150	22	26	27
MS Total Metals	Beryllium	7440-41-7	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Boron	7440-42-8	<10	mg/kg		<10	<10	<10	<10
MS Total Metals	Cadmium	7440-43-9	<0.2	mg/kg		<0.2	<0.2	<0.2	<0.2
MS Total Metals	Chromium	7440-47-3	<5	mg/kg		55	33	42	45
MS Total Metals	Cobalt	7440-48-4	<5	mg/kg		8	7	7	8
MS Total Metals	Copper	7440-50-8	<5	mg/kg		7	<5	7	8
MS Total Metals	Iron	7439-89-6	<10	mg/kg		41000	21000	32000	37000
MS Total Metals	Lanthanum	7439-91-0	<5	mg/kg		24	22	22	25
MS Total Metals	Lead	7439-92-1	<5	mg/kg		8	9	13	15
MS Total Metals	Manganese	7439-96-5	<5	mg/kg		50	42	23	27
MS Total Metals	Mercury	7439-97-6	<0.05	mg/kg		<0.05	<0.05	<0.05	<0.05
MS Total Metals	Molybdenum	7439-98-7	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Nickel	7440-02-0	<5	mg/kg		26	11	13	15

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 16 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

				Sample No.	5922952	5922953	5922954	5922955	5923098
			Cli	ent Sample ID	BH16/0.9-1.0	BH19/0.0-0.1	181212-S-D01	181212-S-D02	BH13/0.0-0.1
				Sample Date	13/12/18	13/12/18	12/12/18	12/12/18	12/12/18
				Sample Type	SOIL	SOIL	SOIL	SOIL	SOIL
MS Total Metals	Selenium	7782-49-2	<3	mg/kg		<3	<3	<3	<3
MS Total Metals	Silver	7440-22-4	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Strontium	7440-24-6	<5	mg/kg		35	14	9	10
MS Total Metals	Thallium	7440-28-0	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Thorium	7440-29-1	<5	mg/kg		6	6	9	10
MS Total Metals	Tin	7440-31-5	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Titanium	7440-32-6	<5	mg/kg		210	56	42	41
MS Total Metals	Uranium	7440-61-1	<5	mg/kg		<5	<5	<5	<5
MS Total Metals	Vanadium	7440-62-2	<5	mg/kg		120	45	60	66
MS Total Metals	Zinc	7440-66-6	<5	mg/kg		18	10	8	9
Analysis	Analyte	CAS #	LOR						
SPOCAS Field	Field pH	pH_FIELD	<0.1	Units	7.6	7.1	5.2	6.2	6.2
SPOCAS Field	Field pH of Peroxide extract	pHfox	<0.1	Units	6.3	5.2	3.1	3.8	4.2
SPOCAS Field	Reaction Rate	REACTION_RA			Moderate	Slight	Slight	Slight	Slight

A Analysed by an alternate technique

LINT Level of Reporting raised due to interferences in the sample matrix

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

QUALITY CONTROL - BLANKS

QC Blanks are an 'analyte free' matrix in which all applicable reagents have been added in the same proportion as in standard samples and are an internal monitor for laboratory contamination.

					Value
Lab Sample ID	Client Sample ID	Analysis	Analyte		
5925851	QC - Blank	MS Total Metals	Aluminium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Antimony	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Arsenic	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Barium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Beryllium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Boron	mg/kg	<10
5925851	QC - Blank	MS Total Metals	Cadmium	mg/kg	<0.2
5925851	QC - Blank	MS Total Metals	Chromium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Cobalt	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Copper	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Iron	mg/kg	<10
5925851	QC - Blank	MS Total Metals	Lanthanum	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Lead	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Manganese	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Mercury	mg/kg	<0.05
5925851	QC - Blank	MS Total Metals	Molybdenum	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Nickel	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Selenium	mg/kg	<3
5925851	QC - Blank	MS Total Metals	Silver	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Strontium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Thallium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Thorium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Tin	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Titanium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Uranium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Vanadium	mg/kg	<5
5925851	QC - Blank	MS Total Metals	Zinc	mg/kg	<5

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 18 of 26 Page: 18-55136 Batch No: Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd 1801684

Client Program Ref:

					Value
Lab Sample ID	Client Sample ID	Analysis	Analyte		
5926257	QC - Blank	OCP	BHC (alpha isomer)	mg/kg	<0.05
5926257	QC - Blank	OCP	a-Endosulphan	mg/kg	<0.05
5926257	QC - Blank	OCP	Aldrin	mg/kg	<0.05
5926257	QC - Blank	OCP	BHC (beta isomer)	mg/kg	<0.05
5926257	QC - Blank	OCP	b-Endosulphan	mg/kg	<0.05
5926257	QC - Blank	OCP	Chlordane	mg/kg	<0.05
5926257	QC - Blank	OCP	cis-Chlordane	mg/kg	<0.05
5926257	QC - Blank	OCP	trans-Chlordane	mg/kg	<0.05
5926257	QC - Blank	OCP	BHC (delta isomer)	mg/kg	<0.05
5926257	QC - Blank	OCP	DDD	mg/kg	<0.05
5926257	QC - Blank	OCP	DDE	mg/kg	<0.05
5926257	QC - Blank	OCP	DDT	mg/kg	<0.05
5926257	QC - Blank	OCP	Dieldrin	mg/kg	<0.05
5926257	QC - Blank	OCP	Sum of alpha-, beta- and Endosulphan	mg/kg	<0.05
5926257	QC - Blank	OCP	Endosulfan Sulfate	mg/kg	<0.05
5926257	QC - Blank	OCP	Endrin	mg/kg	<0.05
5926257	QC - Blank	OCP	Endrin Aldehyde	mg/kg	<0.05
5926257	QC - Blank	OCP	Endrin Ketone	mg/kg	<0.05
5926257	QC - Blank	OCP	Hexachlorobenzene	mg/kg	<0.05
5926257	QC - Blank	OCP	Heptachlor Epoxide	mg/kg	<0.05
5926257	QC - Blank	OCP	Heptachlor	mg/kg	<0.05
5926257	QC - Blank	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05
5926257	QC - Blank	OCP	Methoxychlor	mg/kg	<0.05
5926257	QC - Blank	OCP	Oxychlordane	mg/kg	<0.05
5926257	QC - Blank	OCP	Sum of DDD, DDE and DDT	mg/kg	<0.05
5926257	QC - Blank	OCP	Sum of Aldrin and Dieldrin	mg/kg	<0.05
5926362	QC - Blank	OCP	BHC (alpha isomer)	mg/kg	<0.05
5926362	QC - Blank	OCP	a-Endosulphan	mg/kg	<0.05
5926362	QC - Blank	OCP	Aldrin	mg/kg	<0.05
5926362	QC - Blank	OCP	BHC (beta isomer)	mg/kg	<0.05
5926362	QC - Blank	OCP	b-Endosulphan	mg/kg	<0.05
5926362	QC - Blank	OCP	Chlordane	mg/kg	<0.05
5926362	QC - Blank	OCP	cis-Chlordane	mg/kg	<0.05

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page:Page 19 of 26Batch No:18-55136Report Number:729987Client:Beveridge Williams & Co Pty Ltd

Client Program Ref: 1801684

					Value
5926362	QC - Blank	OCP	trans-Chlordane	mg/kg	<0.05
5926362	QC - Blank	OCP	BHC (delta isomer)	mg/kg	<0.05
5926362	QC - Blank	OCP	DDD	mg/kg	<0.05
5926362	QC - Blank	OCP	DDE	mg/kg	<0.05
5926362	QC - Blank	OCP	DDT	mg/kg	<0.05
5926362	QC - Blank	OCP	Dieldrin	mg/kg	<0.05
5926362	QC - Blank	OCP	Sum of alpha-, beta- and Endosulphan	mg/kg	<0.05
5926362	QC - Blank	OCP	Endosulfan Sulfate	mg/kg	<0.05
5926362	QC - Blank	OCP	Endrin	mg/kg	<0.05
5926362	QC - Blank	OCP	Endrin Aldehyde	mg/kg	<0.05
5926362	QC - Blank	OCP	Endrin Ketone	mg/kg	<0.05
5926362	QC - Blank	OCP	Hexachlorobenzene	mg/kg	<0.05
5926362	QC - Blank	OCP	Heptachlor Epoxide	mg/kg	<0.05
5926362	QC - Blank	OCP	Heptachlor	mg/kg	<0.05
5926362	QC - Blank	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05
5926362	QC - Blank	OCP	Methoxychlor	mg/kg	<0.05
5926362	QC - Blank	OCP	Oxychlordane	mg/kg	<0.05
5926362	QC - Blank	OCP	Sum of DDD, DDE and DDT	mg/kg	<0.05
5926362	QC - Blank	OCP	Sum of Aldrin and Dieldrin	mg/kg	<0.05
Lab Sample ID	Client Sample ID	Analysis	Analyte		
5926261	QC - Blank	OP	Chlorpyrifos	mg/kg	<0.5
5926261	QC - Blank	OP	Diazinon	mg/kg	<0.5
5926261	QC - Blank	OP	Dichlorvos	mg/kg	<0.5
5926261	QC - Blank	OP	Ethion	mg/kg	<0.5
5926261	QC - Blank	OP	Fenthion	mg/kg	<0.5
5926261	QC - Blank	OP	Malathion	mg/kg	<0.5
5926261	QC - Blank	OP	Mevinphos	mg/kg	<0.5
5926261	QC - Blank	OP	Parathion	mg/kg	<0.5
5926261	QC - Blank	OP	Ronnel (Fenchlorfos)	mg/kg	<0.5
5926261	QC - Blank	OP	Stirofos	mg/kg	<0.5
5926365	QC - Blank	OP	Chlorpyrifos	mg/kg	<0.5
5926365	QC - Blank	OP	Diazinon	mg/kg	<0.5
5926365	QC - Blank	OP	Dichlorvos	mg/kg	<0.5
5926365	QC - Blank	OP	Ethion	mg/kg	<0.5

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page:	Page 20 of 26
Batch No:	18-55136
Report Number:	729987
Client:	Beveridge Williams & Co Pty Ltd
Client Program Ref:	1801684

					Value
5926365	QC - Blank	OP	Fenthion	mg/kg	<0.5
5926365	QC - Blank	OP	Malathion	mg/kg	<0.5
5926365	QC - Blank	OP	Mevinphos	mg/kg	<0.5
5926365	QC - Blank	OP	Parathion	mg/kg	<0.5
5926365	QC - Blank	OP	Ronnel (Fenchlorfos)	mg/kg	<0.5
5926365	QC - Blank	OP	Stirofos	mg/kg	<0.5

QUALITY CONTROL - DUPLICATES

QC Data for duplicates is calculated on raw 'unrounded' values. Laboratory duplicates are randomly selected samples tested by the laboratory to maintain method precision and provide information on sample homogeniety.

RPD = Relative Percentage Difference for duplicate determinations. RPD's that fall outside the general acceptance criteria will be attributed to non-homogeneity of samples or results of low magnitudes.

					Sample Value	Duplicate Value	% RPD
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5928123	NCP	SO4	Sulfate	mg/kg	<25	<25	0
5928549	BH05/0.0-0.1	NO3 as N	Nitrate, as N	mg/kg	0.9	0.9	4.9
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5925858	BH11/0.0-0.1	MS Total Metals	Aluminium	mg/kg	11000	12000	11.9
5925858	BH11/0.0-0.1	MS Total Metals	Antimony	mg/kg	<5	<5	0
5925858	BH11/0.0-0.1	MS Total Metals	Barium	mg/kg	58	63	7.8
5925858	BH11/0.0-0.1	MS Total Metals	Beryllium	mg/kg	<5	<5	0
5925858	BH11/0.0-0.1	MS Total Metals	Boron	mg/kg	<10	<10	0
5925858	BH11/0.0-0.1	MS Total Metals	Cadmium	mg/kg	<0.2	<0.2	0
5925858	BH11/0.0-0.1	MS Total Metals	Chromium	mg/kg	38	33	12.0
5925858	BH11/0.0-0.1	MS Total Metals	Cobalt	mg/kg	5	5	2.7
5925858	BH11/0.0-0.1	MS Total Metals	Copper	mg/kg	8	7	11.0
5925858	BH11/0.0-0.1	MS Total Metals	Lanthanum	mg/kg	20	22	7.5
5925858	BH11/0.0-0.1	MS Total Metals	Lead	mg/kg	15	13	13.2
5925858	BH11/0.0-0.1	MS Total Metals	Manganese	mg/kg	79	83	5.5
5925858	BH11/0.0-0.1	MS Total Metals	Mercury	mg/kg	<0.05	<0.05	0
5925858	BH11/0.0-0.1	MS Total Metals	Nickel	mg/kg	10	10	1.0
5925858	BH11/0.0-0.1	MS Total Metals	Selenium	mg/kg	<3	<3	0
5925858	BH11/0.0-0.1	MS Total Metals	Silver	mg/kg	<5	<5	0

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page:Page 21 of 26Batch No:18-55136Report Number:729987Client:Beveridge Williams & Co Pty Ltd

Client Program Ref: 1801684

					Sample Value	Duplicate Value	% RPD
5925858	BH11/0.0-0.1	MS Total Metals	Strontium	mg/kg	12	14	11.5
5925858	BH11/0.0-0.1	MS Total Metals	Thallium	mg/kg	<5	<5	0
5925858	BH11/0.0-0.1	MS Total Metals	Thorium	mg/kg	6	6	0.9
5925858	BH11/0.0-0.1	MS Total Metals	Titanium	mg/kg	67	65	2.3
5925858	BH11/0.0-0.1	MS Total Metals	Uranium	mg/kg	<5	<5	0
5925858	BH11/0.0-0.1	MS Total Metals	Zinc	mg/kg	15	17	9.7
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5929091	BH01/0.0-0.1	SPOCAS Field Tests	Field pH	Units	7.2	7.2	0.1
5929091	BH01/0.0-0.1	SPOCAS Field Tests	Field pH of Peroxide extract	Units	5.9	5.9	0.0
5929091	BH01/0.0-0.1	SPOCAS Field Tests	Reaction Rate		Slight	Slight	NA
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5926254	BH05/0.0-0.1	OCP	BHC (alpha isomer)	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	a-Endosulphan	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Aldrin	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	BHC (beta isomer)	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	b-Endosulphan	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Chlordane	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	cis-Chlordane	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	trans-Chlordane	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	BHC (delta isomer)	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	DDD	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	DDE	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	DDT	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Dieldrin	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Sum of alpha-, beta- and Endosulphan	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Endosulfan Sulfate	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Endrin	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Endrin Aldehyde	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Endrin Ketone	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Hexachlorobenzene	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Heptachlor Epoxide	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Heptachlor	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Methoxychlor	mg/kg	< 0.05	<0.05	0

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page:Page 22 of 26Batch No:18-55136Report Number:729987Client:Beveridge Williams & Co Pty Ltd

Client Program Ref: 1801684

					Sample Value	Duplicate Value	% RPD
5926254	BH05/0.0-0.1	OCP	Oxychlordane	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Sum of DDD, DDE and DDT	mg/kg	<0.05	<0.05	0
5926254	BH05/0.0-0.1	OCP	Sum of Aldrin and Dieldrin	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	BHC (alpha isomer)	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	a-Endosulphan	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Aldrin	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	BHC (beta isomer)	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	b-Endosulphan	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Chlordane	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	cis-Chlordane	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	trans-Chlordane	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	BHC (delta isomer)	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	DDD	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	DDE	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	DDT	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Dieldrin	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Sum of alpha-, beta- and Endosulphan	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Endosulfan Sulfate	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Endrin	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Endrin Aldehyde	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Endrin Ketone	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Hexachlorobenzene	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Heptachlor Epoxide	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Heptachlor	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Methoxychlor	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Oxychlordane	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Sum of DDD, DDE and DDT	mg/kg	<0.05	<0.05	0
5926354	BH16/0.0-0.1	OCP	Sum of Aldrin and Dieldrin	mg/kg	<0.05	<0.05	0
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5926258	BH05/0.0-0.1	OP	Chlorpyrifos	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Diazinon	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Dichlorvos	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Ethion	mg/kg	<0.5	<0.5	0

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page:Page 23 of 26Batch No:18-55136Report Number:729987Client:Beveridge Williams & Co Pty LtdClient Program Ref:1801684

					Sample Value	Duplicate Value	% RPD
5926258	BH05/0.0-0.1	OP	Fenthion	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Malathion	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Mevinphos	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Parathion	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Ronnel (Fenchlorfos)	mg/kg	<0.5	<0.5	0
5926258	BH05/0.0-0.1	OP	Stirofos	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Chlorpyrifos	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Diazinon	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Dichlorvos	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Ethion	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Fenthion	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Malathion	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Mevinphos	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Parathion	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Ronnel (Fenchlorfos)	mg/kg	<0.5	<0.5	0
5926363	BH16/0.0-0.1	OP	Stirofos	mg/kg	<0.5	<0.5	0

QUALITY CONTROL - SPIKES

QC Data for spikes is calculated on raw 'unrounded' values. Laboratory spikes are randomly selected samples in which the analytes in question have been artificially introduced and recovered via standard analysis and are used to provide information on potential matrix effects on analyte recoveries.

Spike recoveries that fall outside the general acceptance criteria will be attributed to sample matrix interference or results of high magnitudes.

NCP: Non-Customer Parent (sample quality is representative of the analytical batch but the sample that was QC tested belongs to a customer not pertaining to the report.)

					Sample Value	Expected Value	% Recovery
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5928124	NCP	SO4	Sulfate	mg/kg	<25	1000	120
5928130	BH05/0.0-0.1	NO3 as N	Nitrate, as N	mg/kg	0.9	41	108
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5925859	BH11/0.0-0.1	MS Total Metals	Arsenic	mg/kg	<5	100	81.7
5925859	BH11/0.0-0.1	MS Total Metals	Barium	mg/kg	58	150	106
5925859	BH11/0.0-0.1	MS Total Metals	Beryllium	mg/kg	<5	100	91.5
5925859	BH11/0.0-0.1	MS Total Metals	Boron	mg/kg	<10	100	80.8
5925859	BH11/0.0-0.1	MS Total Metals	Cadmium	mg/kg	<0.2	100	103
5925859	BH11/0.0-0.1	MS Total Metals	Chromium	mg/kg	38	130	92.6

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 24 of 26 Page: Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd

Client Program Ref: 1801684

					Sample Value	Expected Value	% Recovery
5925859	BH11/0.0-0.1	MS Total Metals	Cobalt	mg/kg	5	100	89.1
5925859	BH11/0.0-0.1	MS Total Metals	Copper	mg/kg	8	110	88.0
5925859	BH11/0.0-0.1	MS Total Metals	Lead	mg/kg	15	110	98.2
5925859	BH11/0.0-0.1	MS Total Metals	Manganese	mg/kg	79	170	108
5925859	BH11/0.0-0.1	MS Total Metals	Mercury	mg/kg	<0.05	1.0	90.4
5925859	BH11/0.0-0.1	MS Total Metals	Molybdenum	mg/kg	<5	100	84.1
5925859	BH11/0.0-0.1	MS Total Metals	Nickel	mg/kg	10	110	86.8
5925859	BH11/0.0-0.1	MS Total Metals	Selenium	mg/kg	<3	100	83.1
5925859	BH11/0.0-0.1	MS Total Metals	Silver	mg/kg	<5	1.0	80.2
5925859	BH11/0.0-0.1	MS Total Metals	Strontium	mg/kg	12	110	87.8
5925859	BH11/0.0-0.1	MS Total Metals	Thallium	mg/kg	<5	100	88.8
5925859	BH11/0.0-0.1	MS Total Metals	Tin	mg/kg	<5	100	96.5
5925859	BH11/0.0-0.1	MS Total Metals	Uranium	mg/kg	<5	100	95.6
5925859	BH11/0.0-0.1	MS Total Metals	Vanadium	mg/kg	110	190	82.2
5925859	BH11/0.0-0.1	MS Total Metals	Zinc	mg/kg	15	110	97.2
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5926256	BH07/0.0-0.1	OCP	BHC (alpha isomer)	mg/kg	<0.05	1.4	85.2
5926256	BH07/0.0-0.1	OCP	a-Endosulphan	mg/kg	<0.05	1.4	82.2
5926256	BH07/0.0-0.1	OCP	Aldrin	mg/kg	<0.05	1.4	113
5926256	BH07/0.0-0.1	OCP	BHC (beta isomer)	mg/kg	<0.05	1.4	85.8
5926256	BH07/0.0-0.1	OCP	b-Endosulphan	mg/kg	<0.05	1.4	73.4
5926256	BH07/0.0-0.1	OCP	Chlordane	mg/kg	<0.05	2.9	96.9
5926256	BH07/0.0-0.1	OCP	cis-Chlordane	mg/kg	<0.05	1.4	97.0
5926256	BH07/0.0-0.1	OCP	trans-Chlordane	mg/kg	<0.05	1.4	96.4
5926256	BH07/0.0-0.1	OCP	BHC (delta isomer)	mg/kg	<0.05	1.4	80.2
5926256	BH07/0.0-0.1	OCP	DDD	mg/kg	<0.05	1.4	121
5926256	BH07/0.0-0.1	OCP	DDE	mg/kg	<0.05	1.4	99.2
5926256	BH07/0.0-0.1	OCP	Dieldrin	mg/kg	<0.05	1.4	76.2
5926256	BH07/0.0-0.1	OCP	Endosulfan Sulfate	mg/kg	<0.05	1.4	75.4
5926256	BH07/0.0-0.1	OCP	Endrin	mg/kg	<0.05	1.4	64.6
5926256	BH07/0.0-0.1	OCP	Endrin Aldehyde	mg/kg	<0.05	1.4	89.6
5926256	BH07/0.0-0.1	OCP	Endrin Ketone	mg/kg	<0.05	1.4	104
5926256	BH07/0.0-0.1	OCP	Hexachlorobenzene	mg/kg	<0.05	1.4	94.8
5926256	BH07/0.0-0.1	OCP	Heptachlor Epoxide	mg/kg	<0.05	1.4	92.8

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page 25 of 26 Page: Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd 1801684

Client Program Ref:

					Sample Value	Expected Value	% Recovery
5926256	BH07/0.0-0.1	OCP	Heptachlor	mg/kg	<0.05	1.4	85.6
5926256	BH07/0.0-0.1	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05	1.4	85.8
5926361	181212-S-D02	OCP	BHC (alpha isomer)	mg/kg	<0.05	1.4	103
5926361	181212-S-D02	OCP	a-Endosulphan	mg/kg	<0.05	1.4	98.2
5926361	181212-S-D02	OCP	Aldrin	mg/kg	<0.05	1.4	124
5926361	181212-S-D02	OCP	BHC (beta isomer)	mg/kg	<0.05	1.4	102
5926361	181212-S-D02	OCP	b-Endosulphan	mg/kg	<0.05	1.4	97.6
5926361	181212-S-D02	OCP	Chlordane	mg/kg	<0.05	2.7	109
5926361	181212-S-D02	OCP	cis-Chlordane	mg/kg	<0.05	1.4	107
5926361	181212-S-D02	OCP	trans-Chlordane	mg/kg	<0.05	1.4	110
5926361	181212-S-D02	OCP	BHC (delta isomer)	mg/kg	<0.05	1.4	105
5926361	181212-S-D02	OCP	DDD	mg/kg	<0.05	1.4	98.6
5926361	181212-S-D02	OCP	DDE	mg/kg	<0.05	1.4	98.2
5926361	181212-S-D02	OCP	DDT	mg/kg	<0.05	1.4	73.2
5926361	181212-S-D02	OCP	Dieldrin	mg/kg	<0.05	1.4	101
5926361	181212-S-D02	OCP	Endosulfan Sulfate	mg/kg	<0.05	1.4	96.8
5926361	181212-S-D02	OCP	Endrin	mg/kg	<0.05	1.4	107
5926361	181212-S-D02	OCP	Endrin Aldehyde	mg/kg	<0.05	1.4	105
5926361	181212-S-D02	OCP	Endrin Ketone	mg/kg	<0.05	1.4	95.6
5926361	181212-S-D02	OCP	Hexachlorobenzene	mg/kg	<0.05	1.4	111
5926361	181212-S-D02	OCP	Heptachlor Epoxide	mg/kg	<0.05	1.4	109
5926361	181212-S-D02	OCP	Heptachlor	mg/kg	<0.05	1.4	100
5926361	181212-S-D02	OCP	BHC (gamma isomer) [Lindane]	mg/kg	<0.05	1.4	102
5926361	181212-S-D02	OCP	Methoxychlor	mg/kg	<0.05	1.4	75.6
5926361	181212-S-D02	OCP	Oxychlordane	mg/kg	<0.05	N/A	
Lab Sample ID	Client Sample ID	Analysis	Analyte				
5926259	BH07/0.0-0.1	OP	Chlorpyrifos	mg/kg	<0.5	1.4	87.2
5926259	BH07/0.0-0.1	OP	Diazinon	mg/kg	<0.5	1.4	82.6
5926259	BH07/0.0-0.1	OP	Dichlorvos	mg/kg	<0.5	1.4	79.8
5926259	BH07/0.0-0.1	OP	Ethion	mg/kg	<0.5	1.4	94.0
5926259	BH07/0.0-0.1	OP	Fenthion	mg/kg	<0.5	1.4	85.4
5926259	BH07/0.0-0.1	OP	Malathion	mg/kg	<0.5	1.4	73.2
5926259	BH07/0.0-0.1	OP	Mevinphos	mg/kg	<0.5	1.4	88.2
5926259	BH07/0.0-0.1	OP	Parathion	mg/kg	<0.5	1.4	75.0

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated.

MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate.

MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate.

Page: Page 26 of 26 Batch No: 18-55136 Report Number: 729987 Client: Beveridge Williams & Co Pty Ltd Client Program Ref: 1801684

Expected Value Sample Value % Recovery 5926259 BH07/0.0-0.1 OP <0.5 78.0 Ronnel (Fenchlorfos) mg/kg 1.4 5926259 OP Stirofos <0.5 1.4 52.6 BH07/0.0-0.1 mg/kg 62.0 5926364 181212-S-D02 OP Chlorpyrifos mg/kg < 0.5 1.4 5926364 181212-S-D02 OP Diazinon mg/kg <0.5 1.4 66.0 5926364 181212-S-D02 OP <0.5 1.4 80.0 Dichlorvos mg/kg 5926364 181212-S-D02 OP <0.5 1.4 70.0 Ethion mg/kg OP 181212-S-D02 1.4 70.0 5926364 Fenthion mg/kg <0.5 OP 5926364 181212-S-D02 Malathion mg/kg <0.5 1.4 60.0 OP 1.4 5926364 181212-S-D02 <0.5 62.0 Mevinphos mg/kg OP 5926364 <0.5 1.4 60.0 181212-S-D02 Parathion mg/kg OP 1.4 5926364 181212-S-D02 Ronnel (Fenchlorfos) mg/kg <0.5 66.0 5926364 181212-S-D02 OP <0.5 1.4 70.0 Stirofos mg/kg

Samples not collected by ALS and are tested as received.

A blank space indicates no test performed. Soil microbiological testing was commenced within 4 days from the day collected unless otherwise stated. MM524: Plate count results <10 per mL and >300 per mL are deemed as approximate. MM526: Plate count results <2,500 per mL and >250,000 per mL are deemed as approximate. Calculated results are based on raw data.

632794

Chain of Custody Form

		J	lob numb	er	180	1801684 Page 1 of)							
	T det	elopment & envir	onmente	ensun	tailts		Laborato	ry	Eurofins MGT				
Client		Victorian Plannin	g Authority			Q	uote num	ıber	180618BEV-2				
Project	Geotechr	nical, Hyrdogeological	and Salinity	Assess	ment	Pro	ject Mar	nager		A.Hayes			
Location		Craigieburn	West				Sampled	bv		,	A.Hayes		
				-				~1	Testing re				
Sa	mple ID	Date sample	Matrix	No. of containers		OCP & OPP	Sulphate	Nitrate	(xo)Hd (£)Hd				
0,1				_	M-17	ö	Sul	Sit	Hd		_	_	
RH01/0	11.6-0-	+ 12/12/11	3 5	1	×	X	X	X	×				
24113	0.0-0.1	4 12/12/11 1A 12/12/1	8 .	51	×	×	×	×	×				
					4				_			_	
					_		-						
				-	-	-	-				_		
				-	-		-	-					
			_		_	_						-	
					-		-	-			_		
			_	-	_	_					_		
	-			-	_	_	-					-	
			_		_		-				_	_	
											_		
					- A Start						_		ļ
							-				_	_	-
			-	-	-	-					_	-	-
				-	_						_	_	
						_	-				_	_	
				-	-		-				_		
				-	-		-	-			_		
Soil: A-S-BEV- Water: A A	W1 (HM/OCP) W-BEV-W1 (EPA I groundwater h	vater W = Water R = Rins A-S-BEV-W2 (HM/PA A Table 2, TDS, pH, anions/ eavy metals testing must h	(H) A-S-BEV- cations, low leve	W3 (HM el: PAH, I	I/PAH/OCP) OCP, TPH)	A-S AI	-BEV-W4 (H BWANZLL (.	НМ/ТРН/Р	AH) A-	lo, Ni, Pb, Sb, : -S-BEV-W5 (EF vel metals & c	PA 621 w/ e		
	time 24hr	🗆 48hr 🗔	72hr	N	Standar	d 🗖	Comme	nts:					
Chain of Cus Fro		Commen											
Adam		Company Beveridge Williams	Date	.0	Receiv	ved by	-		pany		ale	Tir	me
			13-12 .	10	CHANK	10		FM	λų t	13 (12	2 [[8	1.24	lpm
									_			-	
Quality cont				44								lķi	itjal
Sample pre Sample hol		Appropriate sample of Tests conducted withi				chilled	samples	supplied	d to labora	itory		A	y
Final cer		Re-testing of results a		_		nd rep	orted as i	oer CoC	form.				

Enviro Sample Vic

From:	Adam Hayes <hayesa@bevwill.com.au></hayesa@bevwill.com.au>
Sent:	Friday, 14 December 2018 6:55 AM
То:	Enviro Sample Vic
Subject:	RE: Eurofins mgt Sample Receipt Advice - Report 632794 : Site GEOTECHNICAL
	HYDROGEOLOGICAL AND SALINITY ASSESSMENT (1801684)
Attachments:	image003.png; image004.png; 632794_COC.PDF; 632794_sample_receipt_coc.pdf; 632794_summary.pdf

Yes pHf and pHox is required, we only had access to limited sample volumes.

Regards,

Adam Hayes Senior Environmental Scientist

> **Beveridge Williams** <u>www.beveridgewilliams.com.au</u> Melbourne Office p: 03 9524 8888 d: +61 3 9524 8867 m: 0439 632 314

Proudly certified for Quality ISO 9001, Safety AS/NZS 4801 and Environment ISO 14001.

Contact us if you are not the intended recipient of this email as the content may be confidential.

Please click here to provide us with feedback.

From the Beveridge Williams team, we wish you a Merry Christmas and a happy and prosperous New Year. Please be advised our offices will be closed from 1pm on 21st December 2018 and will reopen Monday 7th January 2019. From: EnviroSampleVic@eurofins.com <EnviroSampleVic@eurofins.com> Sent: Thursday, 13 December 2018 2:38 PM To: Adam Hayes <hayesa@bevwill.com.au> Subject: Eurofins | mgt Sample Receipt Advice - Report 632794 : Site GEOTECHNICAL HYDROGEOLOGICAL AND SALINITY ASSESSMENT (1801684)

Dear Valued Client,

Please find attached a Sample Receipt Advice (SRA), a Summary Sheet and a scanned copy of your Chainof-Custody (COC). It is important that you check this documentation to ensure that the details are correct such as the Client Job Number, Turn Around Time, any comments in the Notes section and sample numbers as well as the requested analysis. If there are any irregularities then please contact your Eurofins | mgt Analytical Services Manager as soon as possible to make certain that they get changed.

Regards

Jonathan Mete Sample Receipt

Eurofins | mgt 2-5 Kingston Town Close OAKLEIGH VIC 3166

Beveridge William & Co Pty Ltd PO Box 61 Malvern VIC 3144

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention:

Adam Hayes

Report Project name Project ID Received Date 632794-S GEOTECHNICAL HYDROGEOLOGICAL AND SALINITY ASSESSMENT 1801684

1001004	
Dec 13, 2018	

Client Sample ID			BH01/0.0-0.1A	BH13/0.0-0.1A
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M18-De17142	M18-De17143
Date Sampled			Dec 12, 2018	Dec 12, 2018
Test/Reference	LOR	Unit		
Organochlorine Pesticides				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05
a-BHC	0.05	mg/kg	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05
b-BHC	0.05	mg/kg	< 0.05	< 0.05
d-BHC	0.05	mg/kg	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05
Toxaphene	1	mg/kg	< 1	< 1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	115	88
Tetrachloro-m-xylene (surr.)	1	%	61	52
Organophosphorus Pesticides				
Azinphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Bolstar	0.2	mg/kg	< 0.2	< 0.2
Chlorfenvinphos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos	0.2	mg/kg	< 0.2	< 0.2
Chlorpyrifos-methyl	0.2	mg/kg	< 0.2	< 0.2
Coumaphos	2	mg/kg	< 2	< 2
Demeton-S	0.2	mg/kg	< 0.2	< 0.2

Client Sample ID			BH01/0.0-0.1A	BH13/0.0-0.1A
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M18-De17142	M18-De17143
Date Sampled			Dec 12, 2018	Dec 12, 2018
	1.00	11-20	Dec 12, 2016	Dec 12, 2016
Test/Reference	LOR	Unit		
Organophosphorus Pesticides	0.0			
Demeton-O	0.2	mg/kg	< 0.2	< 0.2
Diazinon	0.2	mg/kg	< 0.2	< 0.2
Dichlorvos Dimethoate	0.2	mg/kg	< 0.2	< 0.2
Disulfoton	0.2	mg/kg	< 0.2	< 0.2
EPN	0.2	mg/kg mg/kg	< 0.2	< 0.2
Ethion	0.2	mg/kg	< 0.2	< 0.2
Ethoprop	0.2	mg/kg	< 0.2	< 0.2
Ethyl parathion	0.2	mg/kg	< 0.2	< 0.2
Fenitrothion	0.2	mg/kg	< 0.2	< 0.2
Fensulfothion	0.2	mg/kg	< 0.2	< 0.2
Fenthion	0.2	mg/kg	< 0.2	< 0.2
Malathion	0.2	mg/kg	< 0.2	< 0.2
Merphos	0.2	mg/kg	< 0.2	< 0.2
Methyl parathion	0.2	mg/kg	< 0.2	< 0.2
Mevinphos	0.2	mg/kg	< 0.2	< 0.2
Monocrotophos	2	mg/kg	< 2	< 2
Naled	0.2	mg/kg	< 0.2	< 0.2
Omethoate	2	mg/kg	< 2	< 2
Phorate	0.2	mg/kg	< 0.2	< 0.2
Pirimiphos-methyl	0.2	mg/kg	< 0.2	< 0.2
Pyrazophos	0.2	mg/kg	< 0.2	< 0.2
Ronnel	0.2	mg/kg	< 0.2	< 0.2
Terbufos	0.2	mg/kg	< 0.2	< 0.2
Tetrachlorvinphos	0.2	mg/kg	< 0.2	< 0.2
Tokuthion	0.2	mg/kg	< 0.2	< 0.2
Trichloronate	0.2	mg/kg	< 0.2	< 0.2
Triphenylphosphate (surr.)	1	%	129	89
			_	_
Nitrate (as N)	5	mg/kg	< 5	< 5
Sulphate (as SO4)	30	mg/kg	340	280
% Moisture	1	%	17	14
Heavy Metals	0			0.5
Arsenic	2	mg/kg	< 2	2.5
Barium	10	mg/kg	45	23
Beryllium Boron	2 10	mg/kg	< 2 < 10	< 2 < 10
		mg/kg	< 10	
Cadmium Chromium	0.4 5	mg/kg mg/kg	< 0.4 37	< 0.4 46
Cobalt	5	mg/kg	13	9.1
Copper	5	mg/kg	6.0	8.9
Lead	5	mg/kg	9.6	15
Manganese	5	mg/kg	35	30
Mercury	0.1	mg/kg	< 0.1	< 0.1
Molybdenum	5	mg/kg	< 5	< 5
Nickel	5	mg/kg	18	16
Selenium	2	mg/kg	< 2	< 2
Silver	0.2	mg/kg	< 0.2	< 0.2
Tin	10	mg/kg	< 10	< 10
	5	mg/kg	7.9	6.2

Client Sample ID Sample Matrix Eurofins mgt Sample No.			BH01/0.0-0.1A Soil M18-De17142	BH13/0.0-0.1A Soil M18-De17143
Date Sampled			Dec 12, 2018	Dec 12, 2018
Test/Reference	LOR	Unit		
Acid Sulfate Soils Field pH Test				
pH-F (Field pH test)*	0.1	pH Units	7.6	6.6
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	6.1	4.9
Reaction Ratings* ^{S05}		comment	4.0	4.0

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Organochlorine Pesticides	Melbourne	Dec 13, 2018	14 Day
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Organophosphorus Pesticides	Melbourne	Dec 13, 2018	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Nitrate (as N)	Melbourne	Dec 13, 2018	28 Day
- Method: APHA 4500-NO3 Nitrate Nitrogen by FIA			
Sulphate (as SO4)	Melbourne	Dec 13, 2018	28 Day
- Method: LTM-INO-4110 Sulfate by Discrete Analyser			
VIC EPA Metals : Metals M17	Melbourne	Dec 13, 2018	28 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Acid Sulfate Soils Field pH Test	Brisbane	Dec 17, 2018	7 Days
- Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests			
% Moisture	Melbourne	Dec 13, 2018	14 Day
- Method: LTM-GEN-7080 Moisture			

8	🔅 eur	ofins	mgt		ABN- 50 005 (e.mail : Enviro web : www.eur	Sales@	eurofine	s.com	2 C P N	Melbourn 2-5 Kings Dakleigh Phone : + VATA # ² Site # 12	ston Tow VIC 316 +61 3 85 1261	64 5000	Sydney Brisbane Perth Unit F3, Building F 1/21 Smallwood Place 2/91 Leach Highway 16 Mars Road Murarrie QLD 4172 Kewdale WA 6105 D Lane Cove West NSW 2066 Phone : +61 7 3902 4600 Phone : +61 8 9251 9600 Phone : +61 2 9900 8400 NATA # 1261 Site # 20794 NATA # 1261 NATA # 1261 Site # 18217 Site # 23736
Ad Pro	ompany Name: Idress: oject Name:	PO Box 61 Malvern VIC 3144 GEOTECHN	iiliams & Co F		AND SALINITY A	SSE	Re Ph Fa			9	32794 524 88 524 88	388	Received:Dec 13, 2018 1:34 PMDue:Dec 18, 2018Priority:3 DayContact Name:Adam Hayes
Pro	oject ID:	1801684											Eurofins mgt Analytical Services Manager : Mary Makarios
		Sa	mple Detail			Nitrate (as N)	Sulphate (as SO4)	Organochlorine Pesticides	Organophosphorus Pesticides	Acid Sulfate Soils Field pH Test	VIC EPA Metals : Metals M17	Moisture Set	
	ourne Laborato			271		Х	х	X	Х		Х	Х	
	ney Laboratory												
	bane Laboratory					<u> </u>				X			
	h Laboratory - N	IA I A Site # 237	36										
No	rnal Laboratory Sample ID	Sample Date	Sampling	Matrix	LAB ID								
1	BH01/0.0-0.1A	Doc 12, 2018	Time	Soil	M18-De17142	x	x	x	x	x	x	x	
2	BH01/0.0-0.1A BH13/0.0-0.1A			Soil	M18-De17142 M18-De17143	X	X	X	X	X	X	X	
_	Counts		I			2	2	2	2	2	2	2	
1631	Counts					-		-	2	-	2	2	

Internal Quality Control Review and Glossary

General

1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.

- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.

mgt

- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Terma	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery.
CRM	Certified Reference Material - reported as percent recovery.
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
QSM	Quality Systems Manual ver 5.1 US Department of Defense
CP	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
TEQ	Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.1 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank			·		
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank	ing/kg		· ·	1 433	
Organophosphorus Pesticides					
Azinphos-methyl	mg/kg	< 0.2	0.2	Pass	
Bolstar	mg/kg	< 0.2	0.2	Pass	
Chlorfenvinphos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Chlorpyrifos-methyl	mg/kg	< 0.2	0.2	Pass	
Coumaphos	mg/kg	< 2	2	Pass	
Demeton-S	mg/kg	< 0.2	0.2	Pass	
Demeton-O	mg/kg	< 0.2	0.2	Pass	
Diazinon	mg/kg	< 0.2	0.2	Pass	
Dichlorvos		< 0.2	0.2	Pass	
	mg/kg	< 0.2	0.2		
Dimethoate Disulfoton	mg/kg	< 0.2	0.2	Pass Pass	
EPN	mg/kg	< 0.2	0.2	Pass	
Ethion	mg/kg	< 0.2	0.2	Pass	
	mg/kg	1 1			
Ethoprop	mg/kg	< 0.2	0.2	Pass	
Ethyl parathion	mg/kg	< 0.2	0.2	Pass	
Fenitrothion	mg/kg	< 0.2	0.2	Pass	
Fensulfothion	mg/kg	< 0.2	0.2	Pass	
Fenthion	mg/kg	< 0.2	0.2	Pass	
Malathion	mg/kg	< 0.2	0.2	Pass	
Merphos	mg/kg	< 0.2	0.2	Pass	
Methyl parathion	mg/kg	< 0.2	0.2	Pass	
Mevinphos	mg/kg	< 0.2	 0.2	Pass	
Monocrotophos	mg/kg	< 2	 2	Pass	
Naled	mg/kg	< 0.2	0.2	Pass	
Omethoate	mg/kg	< 2	2	Pass	
Phorate	mg/kg	< 0.2	0.2	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Pirimiphos-methyl	mg/kg	< 0.2	0.2	Pass	
Pyrazophos	mg/kg	< 0.2	0.2	Pass	
Ronnel	mg/kg	< 0.2	0.2	Pass	
Terbufos	mg/kg	< 0.2	0.2	Pass	
Tetrachlorvinphos	mg/kg	< 0.2	0.2	Pass	
Tokuthion	mg/kg	< 0.2	0.2	Pass	
Trichloronate	mg/kg	< 0.2	0.2	Pass	
Method Blank				1	
Nitrate (as N)	mg/kg	< 5	5	Pass	
Method Blank	1	,			
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Barium	mg/kg	< 10	10	Pass	
Beryllium	mg/kg	< 2	2	Pass	
Boron	mg/kg	< 10	10	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	+
Cobalt	mg/kg	< 5	5	Pass	+
Copper	mg/kg	< 5	5	Pass	+
Lead	mg/kg	< 5	5	Pass	+
Manganese	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	-
•		1 1	5		+
Molybdenum	mg/kg	< 5		Pass	+
Nickel	mg/kg	< 5	5	Pass	<u> </u>
Selenium	mg/kg	< 2	2	Pass	
Silver	mg/kg	< 0.2	0.2	Pass	
Tin	mg/kg	< 10	10	Pass	
Zinc LCS - % Recovery	mg/kg	< 5	5	Pass	
Organochlorine Pesticides					1
Chlordanes - Total	%	77	70-130	Pass	
4.4'-DDD	%	71	70-130	Pass	
4.4'-DDE	%	119	70-130	Pass	
4.4-DDL 4.4'-DDT	%	73	70-130	Pass	
a-BHC	%	124	70-130	Pass	
Aldrin		1124	70-130	Pass	
b-BHC	<u>%</u>	101	70-130	Pass	
d-BHC Dieldrin	<u>%</u>	123	70-130	Pass	+
		115	70-130	Pass	+
Endosulfan I	%	121	70-130	Pass	
Endosulfan II	%	123	70-130	Pass	
Endosulfan sulphate	%	113	70-130	Pass	
Endrin	%	104	70-130	Pass	
Endrin aldehyde	%	118	70-130	Pass	+
Endrin ketone	%	101	70-130	Pass	+
g-BHC (Lindane)	%	117	70-130	Pass	<u> </u>
Heptachlor	%	86	70-130	Pass	<u> </u>
Heptachlor epoxide	%	116	70-130	Pass	
Hexachlorobenzene	%	128	70-130	Pass	<u> </u>
Methoxychlor	%	99	70-130	Pass	L
LCS - % Recovery					L
Organophosphorus Pesticides	I	ļ			
Diazinon	%	117	70-130	Pass	
Dimethoate	%	76	70-130	Pass	

Tes	t		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Ethion			%	101	70-130	Pass	
Fenitrothion				121	70-130	Pass	
Methyl parathion	%	109	70-130	Pass			
Mevinphos	%	112	70-130	Pass			
LCS - % Recovery							
Nitrate (as N)			%	116	70-130	Pass	
LCS - % Recovery							
Heavy Metals							
Arsenic			%	108	80-120	Pass	
Barium			%	112	80-120	Pass	
Beryllium			%	105	80-120	Pass	
Boron			%	106	80-120	Pass	
Cadmium			%	106	80-120	Pass	
Chromium			%	115	80-120	Pass	
Cobalt			%	117	80-120	Pass	
Copper			%	110	80-120	Pass	
Lead			%	119	80-120	Pass	
Manganese			%	116	80-120	Pass	
Mercury			%	112	75-125	Pass	
Molybdenum			%	107	80-120	Pass	
Nickel			%	109	80-120	Pass	
Selenium			%	102	80-120	Pass	
Silver			%	109	80-120	Pass	
Tin			%	110	80-120	Pass	
Zinc			%	105	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	-		
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S18-De08409	NCP	%	120	70-130	Pass	
a-BHC	S18-De08409	NCP	%	116	70-130	Pass	
Aldrin	S18-De08409	NCP	%	101	70-130	Pass	
	S18-De08409	NCP	%	111	70-130	Deee	
b-BHC				1 111	70-150	Pass	
b-BHC d-BHC	S18-De08409	NCP	%	110	70-130	Pass	
	S18-De08409 S18-De08409	NCP NCP	% %				
d-BHC				110	70-130	Pass	
d-BHC Endosulfan I	S18-De08409	NCP	%	110 116	70-130 70-130	Pass Pass	
d-BHC Endosulfan I Endosulfan II	S18-De08409 S18-De08409	NCP NCP	% %	110 116 122	70-130 70-130 70-130	Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate	S18-De08409 S18-De08409 S18-De08409	NCP NCP NCP	% % %	110 116 122 103	70-130 70-130 70-130 70-130	Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin	S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409	NCP NCP NCP NCP	% % %	110 116 122 103 109	70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde	S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409	NCP NCP NCP NCP NCP	% % % %	110 116 122 103 109 108	70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone	S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409 S18-De08409	NCP NCP NCP NCP NCP NCP	% % % % %	110 116 122 103 109 108 92	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane)	S18-De08409	NCP NCP NCP NCP NCP NCP NCP	% % % % %	110 116 122 103 109 108 92 112	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene	S18-De08409	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	110 116 122 103 109 108 92 112 98	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery	S18-De08409	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	110 116 122 103 109 108 92 112 98	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery	S18-De08409	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	110 116 122 103 109 108 92 112 98 130	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides	S18-De08409 S18-De11597	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon	S18-De08409 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon Ethion	S18-De08409 M18-De10609 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90 126	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon Ethion Fenitrothion Methyl parathion	S18-De08409 M18-De10609 M18-De10609 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90 126 82	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon Ethion Fenitrothion Methyl parathion Spike - % Recovery	S18-De08409 M18-De10609 M18-De10609 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90 126 82	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon Ethion Fenitrothion Methyl parathion Spike - % Recovery	S18-De08409 M18-De10609 M18-De10609 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90 126 82 74	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon Ethion Fenitrothion Methyl parathion Spike - % Recovery Heavy Metals	S18-De08409 S18-De10609 M18-De10609 M18-De10609 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90 126 82 74 Result 1	70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	
d-BHC Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-BHC (Lindane) Heptachlor epoxide Hexachlorobenzene Spike - % Recovery Organophosphorus Pesticides Diazinon Ethion Fenitrothion Methyl parathion Spike - % Recovery Heavy Metals Arsenic	S18-De08409 S18-De10609 M18-De10609 M18-De10609 M18-De10609 M18-De10609	NCP NCP NCP NCP NCP NCP NCP NCP NCP NCP	% % % % % % % % % % % % % % % % % % % %	110 116 122 103 109 108 92 112 98 130 Result 1 90 126 82 74 Result 1 101	70-130 70-130	Pass Pass Pass Pass Pass Pass Pass Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Cadmium	M18-De10990	NCP	%	104			75-125	Pass	
Chromium	M18-De10990	NCP	%	104			75-125	Pass	
Cobalt	M18-De10990	NCP	%	98			75-125	Pass	
Copper	M18-De10990	NCP	%	90			75-125	Pass	
Lead	M18-De10990	NCP	%	101			75-125	Pass	
Manganese	M18-De10990	NCP	%	119			75-125	Pass	
Mercury	M18-De10990	NCP	%	103			70-130	Pass	
Molybdenum	M18-De10990	NCP	%	100			75-125	Pass	
Nickel	M18-De10990	NCP	%	94			75-125	Pass	
Selenium	M18-De10990	NCP	%	87			75-125	Pass	
Silver	M18-De10990	NCP	%	108			75-125	Pass	
Tin	M18-De10990	NCP	%	102			75-125	Pass	
Zinc	M18-De10990	NCP	%	119			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Organochlorine Pesticides		,		Result 1	Result 2	RPD			
Chlordanes - Total	S18-De08410	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-BHC (Lindane)	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S18-De08410	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				1	1		-		
Organophosphorus Pesticide		1		Result 1	Result 2	RPD			
Azinphos-methyl	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Bolstar	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorfenvinphos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Chlorpyrifos-methyl	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Coumaphos	S18-De08410	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Demeton-S	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Demeton-O	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Diazinon	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dichlorvos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Dimethoate	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Disulfoton	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
EPN	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethoprop	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ethyl parathion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Fenitrothion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fensulfothion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Fenthion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Malathion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Merphos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Methyl parathion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Mevinphos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Monocrotophos	S18-De08410	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Naled	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Omethoate	S18-De08410	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Phorate	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pirimiphos-methyl	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Pyrazophos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Ronnel	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Terbufos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tetrachlorvinphos	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Tokuthion	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Trichloronate	S18-De08410	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate		-							
				Result 1	Result 2	RPD			
Nitrate (as N)	M18-De10673	NCP	mg/kg	40	39	2.0	30%	Pass	
% Moisture	M18-De17196	NCP	%	8.0	8.1	1.0	30%	Pass	
Duplicate			,						
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M18-De17131	NCP	mg/kg	5.6	5.5	1.0	30%	Pass	
Barium	M18-De17131	NCP	mg/kg	33	35	6.0	30%	Pass	
Boron	M18-De17131	NCP	mg/kg	< 10	14	71	30%	Fail	Q15
Cadmium	M18-De17131	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M18-De17131	NCP	mg/kg	21	21	<1	30%	Pass	
Cobalt	M18-De17131	NCP	mg/kg	< 5	5.5	15	30%	Pass	
Copper	M18-De17131	NCP	mg/kg	27	28	5.0	30%	Pass	
Lead	M18-De17131	NCP	mg/kg	7.3	6.7	8.0	30%	Pass	
Manganese	M18-De17131	NCP	mg/kg	66	84	24	30%	Pass	
Mercury	M18-De17131	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Molybdenum	M18-De17131	NCP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M18-De17131	NCP	mg/kg	17	19	16	30%	Pass	
Selenium	M18-De17131	NCP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M18-De17131	NCP	mg/kg	0.4	0.4	13	30%	Pass	
Tin	M18-De17131	NCP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M18-De17131	NCP	mg/kg	120	140	17	30%	Pass	
Duplicate			.		110	.,	0070	1 000	
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
riela sunate sens riela pri 16st	I	1						+	
pH-F (Field pH test)*	M18-De17142	CP	pH Units	7.6	7.5	pass	30%	Pass	

Comments

Eurofins | mgt accreditation number 1261, corporate site 1254 and 14271 is currently in progress of a controlled transition to a new custom built location at 6 Monterey Road, Dandenong South, Victoria 3175. All results on this report denoted as being performed by Eurofins | mgt 2-5 Kingston Town Close, Oakleigh Victoria 3166 corporate site 1254, will have been performed on either Oakleigh or new Dandenong South site.

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	No
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q15 The RPD reported passes Eurofins I mat's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Q15 The RPD reported passes Eurofins | mgt's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report. Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised By

Mary Makarios	Analytical Services Manager
Joseph Edouard	Senior Analyst-Organic (VIC)
Myles Clark	Senior Analyst-SPOCAS (QLD)
Julie Kay	Senior Analyst-Inorganic (VIC)
Chris Bennett	Senior Analyst-Metal (VIC)

Glenn Jackson General Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mg shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg to liable for consequential damages including, but not limited to, isst produced in stating to more into any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mg to liable for consequential damages including, but not limited to, isst produced in stating to more into any other person or company.