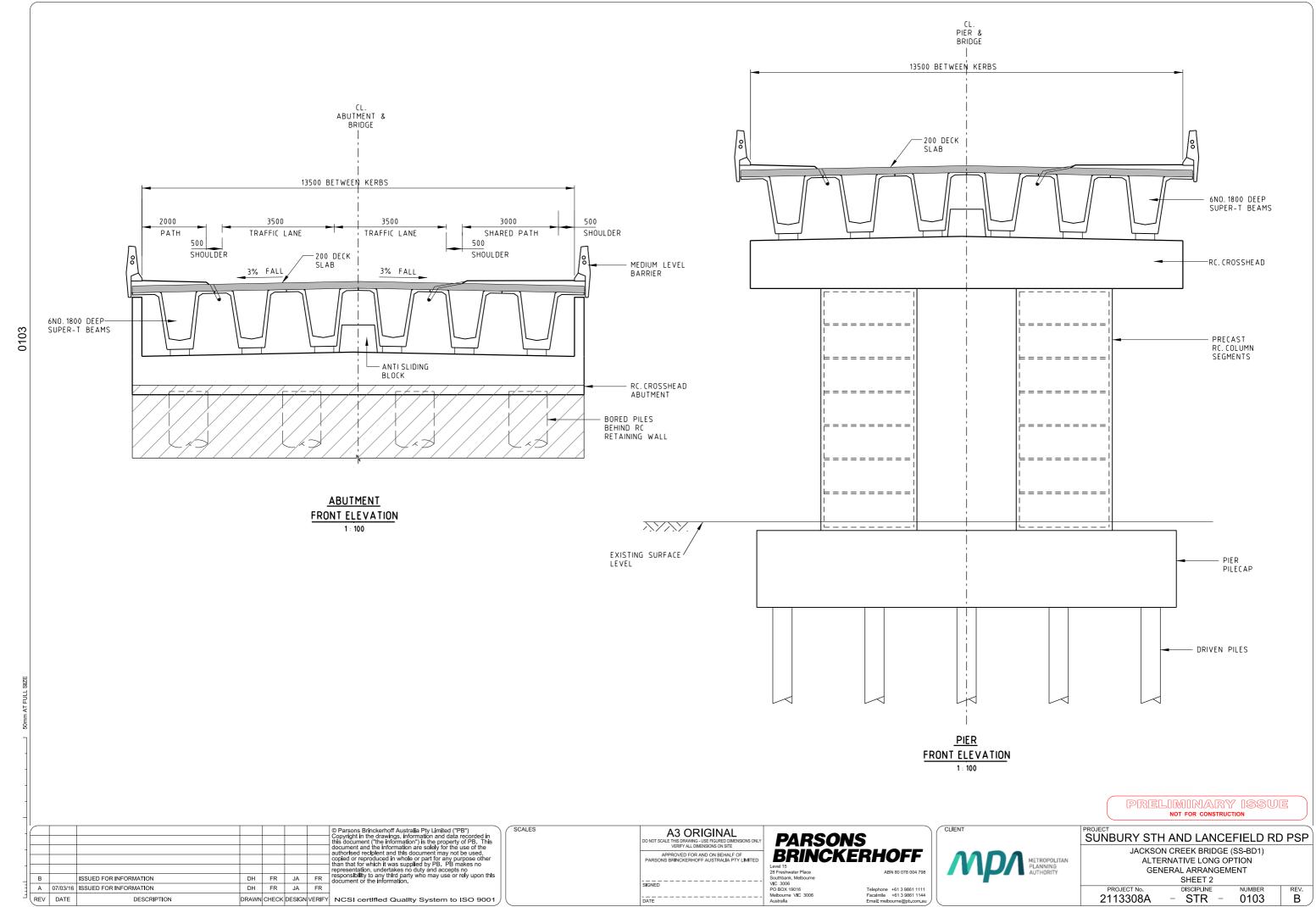
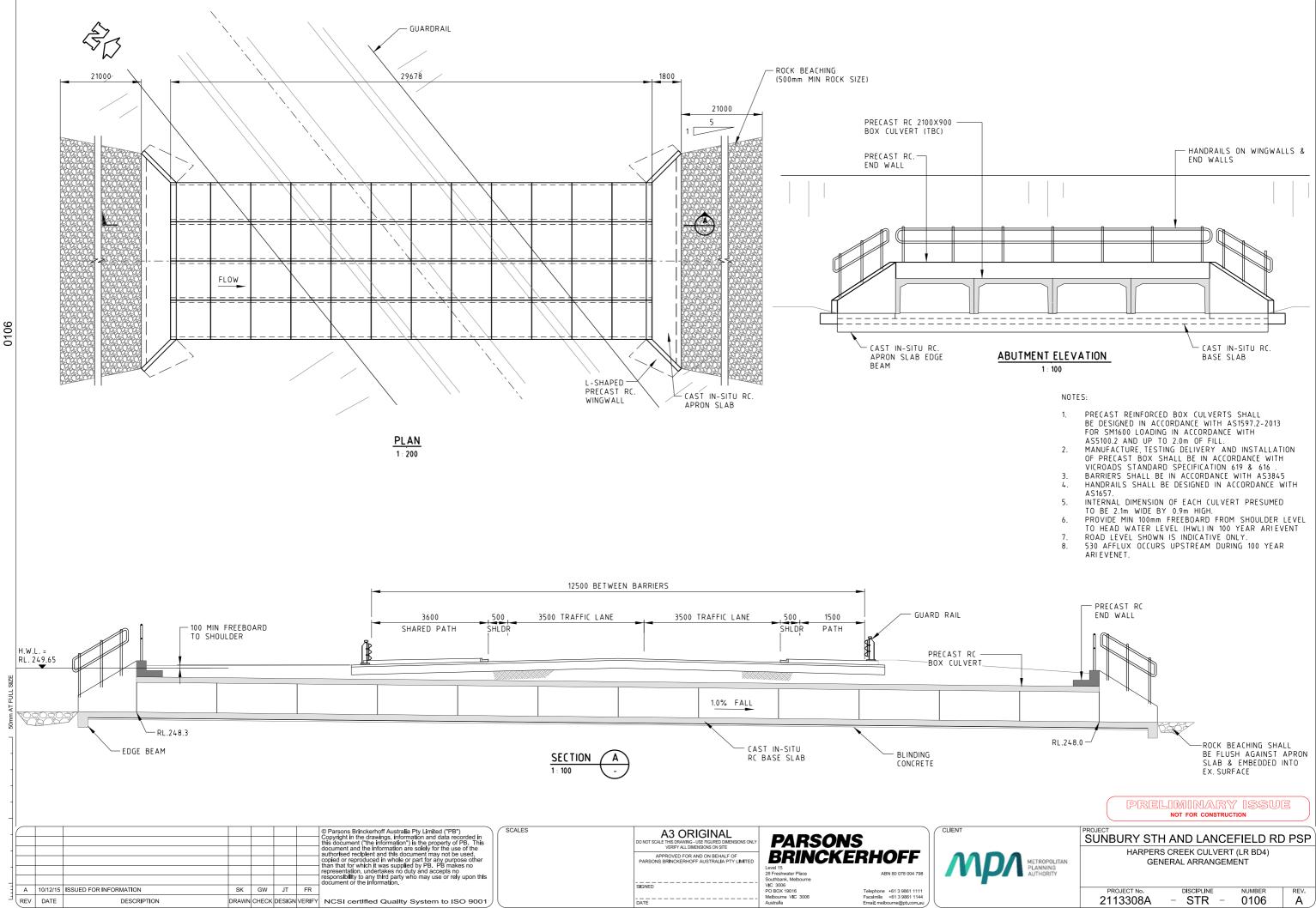

28/10/2016 11:05:39 AM

[\]ApmelfII01\proj\MIMETROPOLITAN_PLANNING'2113308A_SUNBURY_SOUTH_AND_LANCEFIELD\09_CADD\DrawIngs\04_Structures\02_DrawIngs\2113308A-STR-0100.dgn


28/10/2016 11:06:06 AM

\\Apmelfil01\proj\MIMETROPOLITAN_PLANNING\2113308A_SUNBURY_SOUTH_AND_LANCEFIELD\09_CADD\Drawings\04_Structures\02_Drawings\2113308a-str-0101.dgn


28/10/2016 11:06:23 AM

\Apmelfil01\proj\MMETROPOLITAN_PLANNING/2113308A_SUNBURY_SOUTH_AND_LANCEFIELD/09_CADD\Drawings\04_Structures\02_Drawings\2113308a-str-0102.dgn

\Apmelfil01\projMIMETROPOLITAN_PLANNING\2113308A_SUNBURY_SOUTH_AND_LANCEFIELD\09_CADD\Drawings\04_Structures\02_Drawings\2113308a-str-0103.dgn

28/10/2016 11:06:51 AM

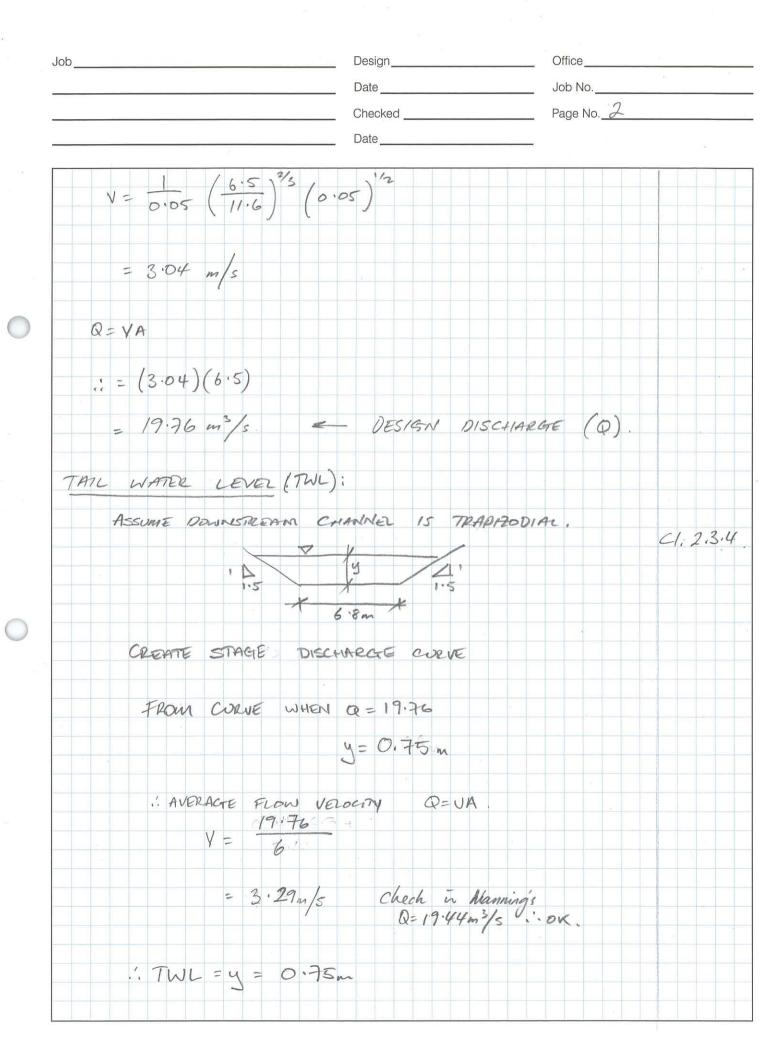
28/10/2016 11:07:20 AM \Apmelfil01\projMIMETROPOLITAN_PLANNING\2113308A_SUNBURY_SOUTH_AND_LANCEFIELD\09_CADD\Drawings\04_Structures\02_Drawings\2113308a-str-0106.dgn

PROJECT No.	DISCIPLINE	NUMBER	REV.
2113308A	_ QTD _	0106	A
2113300A	- 316 -	0100	A /

Appendix C

Culvert calculations

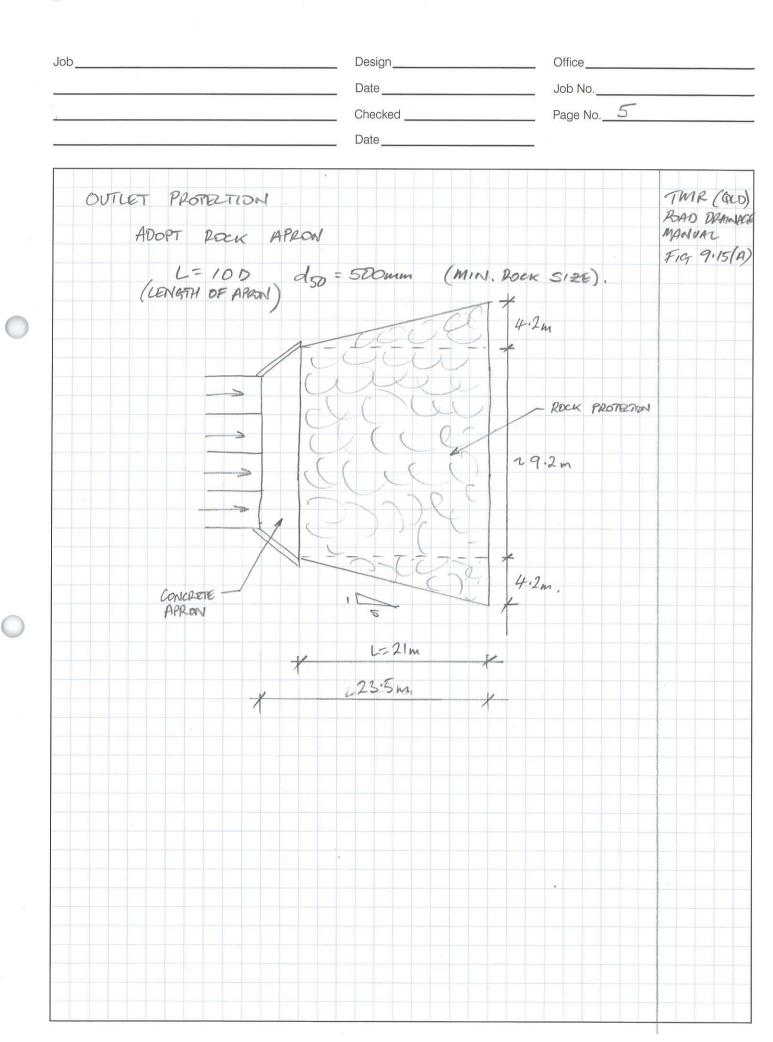
Appendix 9B Design Form

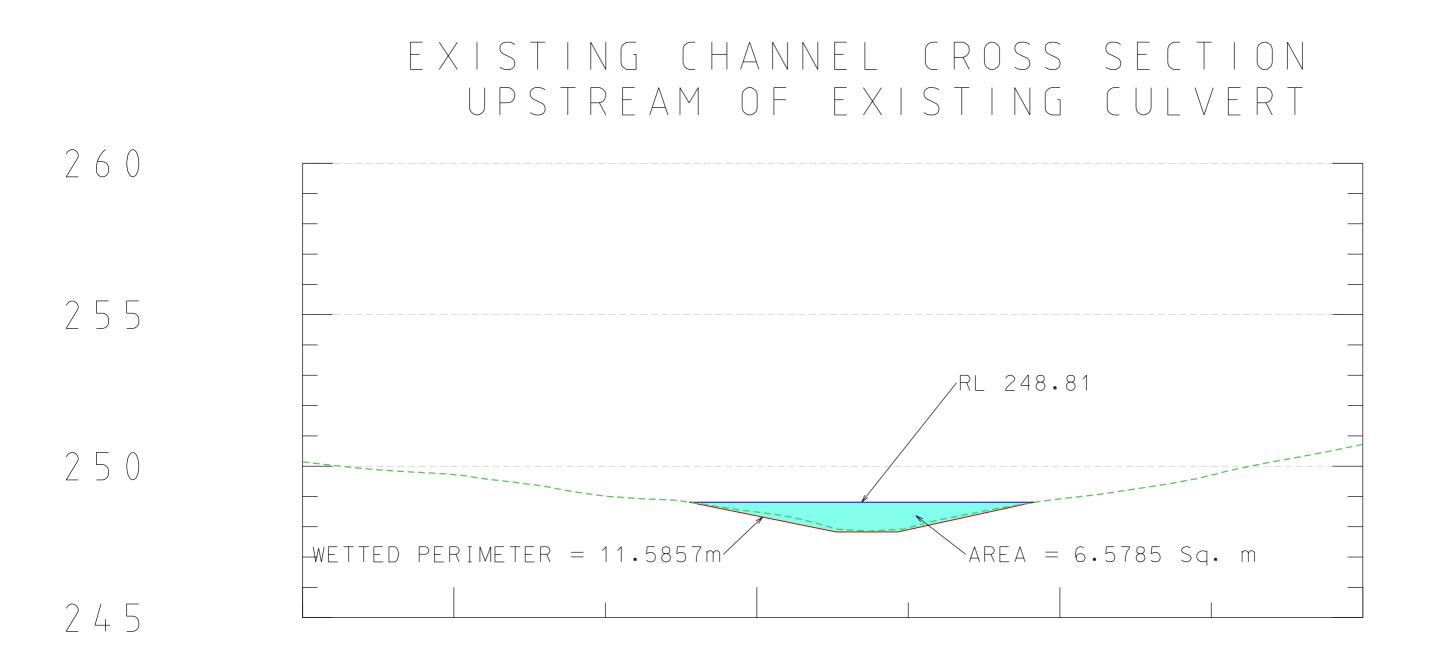

PROJECT:							i a		Designer: Checker / Date:	Designer: Checker / Reviewer: Date:	wer:				Sheet	of
Contraction (C.) (YDROI	LOGIC	HYDROLOGICAL AND DESIGN	DESIGN	INFORMATION	INTION			Che	1 14			SKETCH	핑		
01 = 19:76	- s/"m	m ³ /s - ARI 100 yrs	20 yrs	TW1 =	Stio	E			ouo			$\left \right $		1	So= 0.0	<u>0.0/</u> m/m 30 m
Q ₂ =	_m ³ /s - ARI	ARI	yrs	$TW_2 =$		٤			=	ALLOWABLE HW	>	\neg			i E .	1
Q ₃ =	_m ³ /s - ARI	ARI	yrs	Extr	eme Eve	Extreme Event Check	100 M		Inlet <i>Ht</i> .	Ht. 248.3 Outlet Ht. 248	2.0		Outlet Ht.	248		
	0			٦		HEADW	HEADWATER COMPLITATION	TUMPLIT	1000					(NBOLA)	2	
CUII VERT	per	Size	INLET	INLET CONT.			0	UTLET O	OUTLET CONTROL				атев 1	۲ (۷۵) ET	Comr	Comments
NO	O/B Ratio	D or H	<u>n</u> D	<i>HW</i> _i (1)	ke	π	ģ	$\frac{dc + D}{2}$ (2)	TW (3)	ho	LSo	HWo (4)	оятиор WDAЭН	VELOCIT OUTL	(incl. check of Fro	(incl. check of Froude No. & AHM)
4No. 2.1×0.9	9:4	6.0	1.5	1.35	0.5	0.65	0.822	0.86	0.75	98.0	0.3	1-21	IN	4m/5	Fr= 1.08	OUTLET
	8-2.3														PROTECTION	N RED'D
													14			
			2													
				2												
										0						
Levee/block:			\$ '86	a×	z	01.86	S1.86 -			si °y əsi	ədc	0 ₅₇ .0	(4) & (4)	Average o	Arerage outlet velocity: V ₆ ≓Q/A. Refer Sect. 9.11.9 When inlet controt: Use Figs 9B.11 & 9B.12 to	. Refer Sect. 9.11.9 3.11 & 9B.12 to
Energy Dissipator:			- 1.86 sgi7	a/MH= ^I MH	C.Of. 6 sidsT	i - č.86 spi7	- S1.86 sgif			If TW > D, ti TW. Otherw greater of (2	olg x ritgnaj	04 + H=°MH	Greater of (determine Manning's When out! or 7W as a	determine part full area for pipes. For boxes, use Manning's to determine normal depth. When outlet control: Depth of flow based on D , d_c or TM' as appropriate.	s. For boxes, use depth. ow based on <i>D</i> , <i>d</i> _c
Summary and Recommendations: # AD097 * MIN =	nemen	dations	* MIN	SHC		2100 mm (w) × 700(H) 24 249.75	249.75	c × b	(H)00	Box		cullepts		HELIM	21m 0F 20c4 PROTE	M OF do = 500 um
				90	0P											

March 2010 9B-1

SUNBURY SOUTH >	Design GW Offic	е
ANCEFIELD RD PSP	Date 23/11/15 Job	No. 2113308A
di in in	Checked Page	
	Date	
		×
LR-BD4 CULVERT CALCU	LATION	
		· · · · · · · · · · · · · · · · · · ·
MELBOURNE WATER INPUT	INFORMATION: (100	4 ART)
REDUCED LEVEL AT CULVE	AT LOCATION = RL 248	3.81m AND
FLOW WIDTH & ISM.		
× 248.81m		
V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· · · · · · ·
1///		
RL 247.85 P=	AREA (A)	
RL 247.85	11 . 6	
FROM CROSS SECTION BASE	D OFF LIDAR CONTOUR	S OF EXISTING
CHANNEL (CROSS SECTION NORT	TH OF EXIST. UNSEALED ROAD	×
$A = 6 \cdot 5 m^2$		1
MANNING'S FORMULA		AUSTROADS GUIDE TO
		ROAD DESIGN (AGRD)
$V = \frac{1}{n} R^{2/3} S_{0}^{1/2}$		PART 5B.
So = Slope		CL 2.3.2
	A	
R= Hydraulic Radius = -	A P= wetled perimeter.	
n = Manning's roughness co	efficient.	
CHIANNIEL APPEARS TO BE NAT	NRAL WITH FARRY REGUL	AR SECTION.
	WEEDS, FLOW GREATER THAT	
		11122
MANNING'S n = 0.0	5-	+101, 2.2
So OF EXISTING CHANNEL	- 2 0.05 m/m	1.
8/		
P (OF EXISTING CHANNEL) =	11-16 m	

PARSONS BRINCKERHOFF


WSP PARSONS BRINCKERHOFF


Job Design Office Job No._____ Date____ Page No._3 Checked _____ Date 4No. 2.9 × 0.9 Box CULVERT. Q = 4:9m3/s per cell. $dc = 0.467 \left(\frac{\varphi}{B}\right)^{2/3}$ cl. 3.10.6 = 0.467 (2.1) 2/3 = 0.822 OUTLET VELOCITY - NEED TO CHECK BOTH INLET & OUTLET CONTROL C1.3.10.7 OUTLET VELOCITY AS HWI IS CLOSE TO HWO. (1.35) (1.21) ADOPT HIGHEST VO AN CORRESPONDING CONTROL -> OUTLET CONTROL CL. 3.10.8 Vo = R FLAN DEPTH = de AS TWL<de A = 2.1 × 0.822 = 1.73 m² Q=4.9m3/s (pas cell) $V_0 = \frac{4.9}{1.72}$ = 2.8 m/s

Job Office Design Job No. Date Page No. 4 Checked _____ Date > INLET CONTROL CL. 3.10.9 USE MANNINGS FORMULA TO CREATE MODIFIED STAGE DISCHARCTE CURVE FOR CULVERT CEL. FROM CURVE WHEN Q= 4.9m3/s Vo= 4m/s V y= 0.58m. 115111 1200 INLELT CONTROL. , ², Vo= 4m/s OUTLET FLOW ENERGY CL. 3-10.10 B= 2 (y (0-y) $F_r = Q \int \frac{B}{g M^2}$ B = 0.86 A= 0.58 × 2.1 $= 4.9 \sqrt{\frac{0.86}{9.81(1.218)^3}}$ = 1.218m2 = 1.08 : FLOW IS SUPERCRACAL AS Fr71 OUTLET PROTECTION IS REQUIRED. AS FOR AND VOZ2.5m/s. ." MIN SHOULDER HEIGHT WITH LOOMM FREEBOARD. RE = 249.75 . '. OK.

Stage discharge curve for the existing channel at the outlet (immediately upstream of existing culvert location)

1

Assuming a trapezoidal shape

channel slope (S)	0.05	m/m	
Sides slope (x to y)	1.5	to	
Base width	6.8	m	
Manning's n	0.05		

Depth	Area (A)	Wetted perimeter (P)	Hydraulic Radius (R)	Velocity (V)	Discharge (Q)
m	m	m	m	m/s	(@) m3/s
0	0	6.8	0.00	0.00	0.00
0.05	0.34375	6.980278	0.05	0.60	0.21
0.1	0.695	7.160555	0.10	0.94	0.66
0.15	1.05375	7.340833	0.14	1.23	1.29
0.2	1.42	7.52111	0.19	1.47	2.09
0.25	1.79375	7.701388	0.23	1.69	3.04
0.3	2.175	7.881665	0.28	1.90	4.12
0.35	2.56375	8.061943	0.32	2.08	5.34
0.4	2.96	8.242221	0.36	2.26	6.69
0.45	3.36375	8.422498	0.40	2.43	8.16
0.5	3.775	8.602776	0.44	2.58	9.75
0.55	4.19375	8.783053	0.48	2.73	11.46
0.6	4.62	8.963331	0.52	2.87	13.28
0.65	5.05375	9.143608	0.55	3.01	15.22
0.7	5.495	9.323886	0.59	3.14	17.27
0.75	5.94375	9.504163	0.63	3.27	19.44
0.8	6.4	9.684441	0.66	3.39	21.72
0.85	6.86375	9.864719	0.70	3.51	24.10
0.9	7.335	10.045	0.73	3.63	26.60

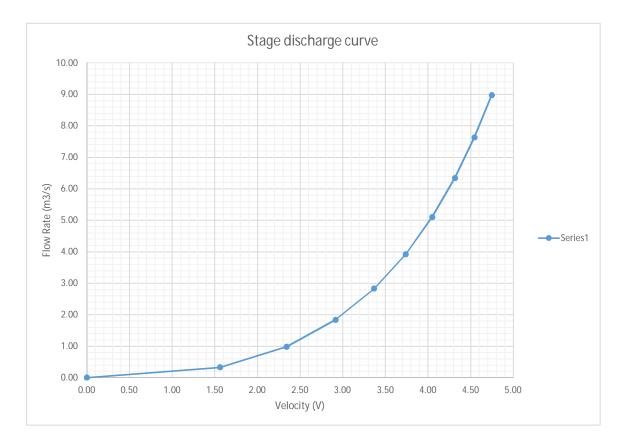
check

0.75	5 5.94375	9.504163	0.63	3.27	19.44
0.10	0.01010	0.001100	0.00	0.21	10.11

Q =	19.75 m3/s	
TWL =	0.75 m	

Tailwater level

Stage discharge curve for culvert


2100x900 Box culvert

Calculation of outlet velocity under inlet control

culvert slope (S)	0.01	m/m	
Sides slope (x to y)	0	to	1
Base width	2.1	m	
Manning's n	0.013		

		Wetted	Hydraulic Radius	Volocity	Diacharga
		perimeter	Radius	Velocity	Discharge
Depth	Area (A)	(P)	(R)	(V)	(Q)
m	m2	m		m/s	m3/s
0	0	2.1	0.00	0.00	0.00
0.1	0.21	2.3	0.09	1.56	0.33
0.2	0.42	2.5	0.17	2.34	0.98
0.3	0.63	2.7	0.23	2.92	1.84
0.4	0.84	2.9	0.29	3.37	2.83
0.5	1.05	3.1	0.34	3.74	3.92
0.6	1.26	3.3	0.38	4.05	5.10
0.7	1.47	3.5	0.42	4.31	6.34
0.8	1.68	3.7	0.45	4.54	7.63
0.9	1.89	3.9	0.48	4.75	8.97

che	ck					
	0.58	1.218	3.26	0.37	3.99	4.86
Q =		4.9 m3	3/s	pe	r barrel	
V =		4 m/	s	Ou	tlet velocity	

